способ производства листов из хладостойкой стали
Классы МПК: | C21D8/02 при изготовлении плит или лент C21D9/46 листового металла |
Автор(ы): | Карзов Георгий Павлович (RU), Бережко Борис Иванович (RU), Стольный Виктор Иванович (RU), Зимин Герман Георгиевич (RU), Быковский Николай Георгиевич (RU), Попов Олег Григорьевич (RU), Оленин Михаил Иванович (RU), Бушуев Сергей Владимирович (RU) |
Патентообладатель(и): | ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ "ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ "ПРОМЕТЕЙ" (ФГУП "ЦНИИ КМ "ПРОМЕТЕЙ") (RU) |
Приоритеты: |
подача заявки:
2009-08-19 публикация патента:
10.07.2010 |
Изобретение относится к технологии производства листового проката, предназначенного для изготовления деталей и узлов конструкций, работающих при низких температурах, например контейнеров для перевозки и длительного хранения отработавшего ядерного топлива. Для повышения хладостойкости листов из низкоуглеродистой ферритно-перлитной стали осуществляют нагрев заготовки до температуры выше Ас 3, деформацию в 3 стадии, причем на предварительной стадии деформацию на первых трех проходах производят при температуре 950÷1050°С с обжатиями 6-10% за проход с суммарным обжатием не менее 25%, затем заготовку подстуживают и проводят промежуточную деформацию при температуре Ar3+30°С с обжатиями не менее 15% за проход при суммарной деформации не менее 55%, а затем проводят окончательную деформацию при Ar 3-20°С с обжатиями не менее 8-10% за проход с паузами между проходами не менее 5 сек при суммарном обжатии не менее 40% и охлаждение листа со скоростью не менее 30°С/мин до температуры 400°С, далее на воздухе. 2 табл.
Формула изобретения
Способ производства листов из хладостойкой стали, включающий получение заготовки, нагрев до температуры выше Асз , деформацию с регламентированными обжатиями, охлаждение, отличающийся тем, что деформацию осуществляют в 3 стадии, сначала проводят предварительную деформацию при температуре 950÷1050°С с обжатиями на первых трех проходах, 6÷10% за проход и с суммарным обжатием не менее 25%, подстуживают заготовку и проводят промежуточную деформацию при температуре Ar3+30°С с обжатиями не менее 15% за проход при суммарной деформации не менее 55%, а затем выполняют окончательную деформацию при температуре Ar3-20°С с обжатиями не менее 8-10% за проход с паузами между проходами не менее 5 с, при суммарном обжатии не менее 40%, при этом охлаждение листа после деформации производят со скоростью не менее 30°С/мин до температуры 400°С, далее - на воздухе.
Описание изобретения к патенту
Изобретение относится к технологии производства листового проката, предназначенного для изготовления деталей и узлов конструкций, работающих при низких до -60°С температурах, например контейнеров для перевозки и длительного хранения отработавшего ядерного топлива.
Наиболее близким по технической сущности и достигаемому эффекту является способ производства листов из хладостойкой стали, изложенный в патенте № 2337976, опубликованном 10.11.2008 г. Способ включает предварительную деформацию при температуре 1000-850°С с суммарным обжатием 65-75%, окончательную деформацию при температуре 750-700°С с обжатием за проход не менее 12% и суммарным обжатием не менее 60%, закалку стали ведут с прокатного нагрева (с температуры 700-750°С) со скоростью более 35°С/мин до температуры 150±10°С, затем - на воздухе, последующий высокий отпуск ведут при температуре 650±20°С с выдержкой 1,0-1,5 мин/мм толщины листа с последующим охлаждением на воздухе.
Недостатком известного способа, как установлено исследованиями, является недостаточно высокая хладостойкость низкоуглеродистых ферритно-перлитных сталей за счет возникновения в них зон предвыделений карбонитридов при охлаждении после высокого отпуска.
Техническим результатом изобретения является повышение хладостойкости низкоуглеродистой ферритно-перлитной стали.
Технический результат достигается способом производства листов из хладостойкой низкоуглеродистой стали, включающим получение заготовки, нагрев до температуры выше Ас3, деформацию с регламентированными обжатиями, охлаждение, отличающимся тем, что деформацию осуществляют в 3 стадии, сначала проводят предварительную деформацию при температуре 950÷1050°С с обжатиями на первых трех проходах 6÷10% за проход и с суммарным обжатием не менее 25%, подстуживают заготовку и проводят промежуточную деформацию при температуре Ar3 +30°С (динамической*) с обжатиями не менее 15% за проход, при суммарной деформации не менее 55%, а затем выполняют окончательную деформацию при температуре Ar3 - 20°С (динамической) с обжатиями не менее 8-10% за проход с паузами между проходами не менее 5 сек, при суммарном обжатии не менее 40%, при этом охлаждение листа после прокатки производят со скоростью не менее 30°С/мин до температуры 400°С, далее - на воздухе.
Как установлено исследованиями, осуществляемый высокий отпуск в диапазоне температур 650±20°С с охлаждением на воздухе приводит к образованию в стали участков с предвыделениями карбонитридов, которые имеют параметры решетки, отличные от матрицы. Это приводит к возникновению напряжений 2 рода, которые снижают хладостойкость стали.
*При деформации и охлаждении металла необходимо учитывать изменения положения критических точек, поэтому введено определение Ar3 (динамическая). (Справочник по термомеханической и термоциклической обработке металлов. М.Е.Смагоринский, А.А.Булянда, С.В.Кудряшов. С-Петербург, Политехника, 1992, стр.150-152).
На хладостойкость стали также оказывают влияние температура и длительность выдержки при отпуске. При увеличении длительности высокого отпуска от 1,5 до 3,0 мин/мм толщины листа, происходит коагуляция строчечных карбонитридов, что повышает хладостойкость стали. При дальнейшем увеличении длительности отпуска, превышающей 3 мин/мм толщины листа, происходит рост частиц карбонитридов по границам зерен за счет их растворения внутри -фазы и их огрубления, что приводит к снижению хладостойкости.
Хладостойкость листового проката может быть повышена за счет уменьшения размеров зерен, повышения степени равноосности и исключением образования крупных выделений карбонитридов.
С этой целью первый этап деформации выполняется при температуре 950÷1050°С для раздробления литой структуры и подготовки металла к последующей интенсивной деформации. На втором этапе после подстуживания заготовки производят интенсивную деформацию металла при температуре Ar3+30°С (динамической) с обжатиями не менее 15% за проход при суммарном обжатии не менее 55% с целью уменьшения размеров зерен и раздробления выделений карбонитридов. Окончательную деформацию производят при температуре Ar3 - 20°С (динамической) с обжатиями не менее 8-10% за проход с паузами между проходами не менее 5 сек для обеспечения протекания процессов рекристаллизации при суммарном обжатии не менее 40% для получения равноосной мелкозернистой структуры с высокой степенью дисперсности карбонитридных выделений. С целью исключения образования крупных карбонитридных включений в процессе охлаждения листов производится ускоренное их охлаждение после прокатки до температуры 400°С со скоростью не менее 30°С/мин, после чего производится замедленное охлаждение на воздухе, что способствует получению листов с равноосной мелкозернистой структурой и мелкими скоагулиро-ванными выделениями карбонитридов. Исследования показывают, что листы с такой структурой имеют повышенную хладостойкость.
Пример выполнения заявленного способа из стали марки 09Г2СА-А, химсостав которой приведен в табл.1.
На установке непрерывной разливки были отлиты слябы сечением 300×1200 мм.
Таблица 1 | |||||||||||
Химический состав стали 09Г2СА-А | |||||||||||
Марка стали | Содержание элементов, мас.% | ||||||||||
С | Si | Mn | P | S | Cr | Ni | Cu | V | Nb | Fe | |
09Г2СА-А | 0,08 | 0,53 | 1,42 | 0,005 | 0,007 | 0,15 | 0,24 | 0,15 | 0,03 | 0,04 | Остальное |
Из этих слябов были изготовлены 2 партии листового проката толщиной 85 мм. Одна партия листов была изготовлена по известному способу, вторая - по предлагаемому.
Из этих заготовок были изготовлены ударные образцы с острым надрезом и испытаны при температуре -60°С по ГОСТ 9454. Результаты испытаний представлены в табл.2.
Как видно из полученных результатов, листы, изготовленные по предлагаемому способу, имеют более высокие значения хладостойкости по сравнению с листами, изготовленными по известному способу.
Ожидаемый технико-экономический эффект по сравнению с прототипом выразится в возможности создания новых изделий специальной техники повышенной надежности и долговечности из экономно-легированной низкоуглеродистой ферритно-перлитной стали за счет повышения ее хладостойкости.
Кроме того, отпадает надобность в термической обработке листов, что ведет к снижению трудоемкости их изготовления.
Класс C21D8/02 при изготовлении плит или лент
Класс C21D9/46 листового металла