способ передачи и приема цифровой информации в тропосферных линиях связи

Классы МПК:H04B7/22 системы, основанные на распространении радиоволн со вторичным излучением при отражении (например тропосферное распространение радиоволн) 
Автор(ы):, , , ,
Патентообладатель(и):Открытое акционерное общество "Концерн "Созвездие" (RU)
Приоритеты:
подача заявки:
2009-05-12
публикация патента:

Изобретение относится к области радиосвязи и может быть использовано для разработки тропосферных радиостанций. Технический результат - снижение влияния замираний при передаче и приеме информации в цифровых тропосферных линиях связи и повышение помехоустойчивости связи при упрощении устройства для осуществления способа. Для этого в способе передачи и приема цифровой информации в тропосферных линиях связи, основанном на разнесении сигналов по частоте, согласно изобретению используют модуляцию центральной частоты излучаемых сигналов с линейной частотной модуляцией (ЛЧМ) по бинарному информационному закону, осуществляют их обработку на согласованном фильтре сжатия и выделяют полезную информацию с помощью селектирующих стробов и тактовых импульсов, наведенных ЛЧМ пилот-сигналом. 9 ил. способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372

способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372

Формула изобретения

Способ передачи и приема цифровой информации в тропосферных линиях связи, основанный на разнесении сигналов по частоте, отличающийся тем, что используют модуляцию центральной частоты излучаемых сигналов с линейной частотной модуляцией (ЛЧМ) по бинарному информационному закону, осуществляют их обработку на согласованном фильтре сжатия и выделяют полезную информацию с помощью селектирующих стробов и тактовых импульсов, наведенных ЛЧМ пилот-сигналом.

Описание изобретения к патенту

Изобретение относится к области радиосвязи и может быть использовано для разработки тропосферных радиостанций.

Известен способ сдвоенного пространственно разнесенного приема [Нарытник Т.Н. Радиорелейные и тропосферные системы передачи: Учебн. пособие - К.: Концерн «Видавничий Дiм «Iн Юре», 2003. - 336 с., с.191], при котором на один передатчик передающей станции поступает групповой сигнал от каналообразующей аппаратуры, а приемная станция имеет две антенны, разнесенные одна от другой на 50-100 длин волн в направлении, перпендикулярном к направлению на корреспондента. Быстрые релеевские замирания радиосигналов на выходе антенн в этом случае оказываются практически некоррелированными. Поэтому один из приемников, подключенный к разнесенным антеннам, но работающий на общую нагрузку, практически всегда находится в лучших условиях приема, чем другой. Разнесение в пространстве обеспечивается при использовании одного передатчика, однако требуется две антенно-фидерные системы, которые ввиду большого усиления антенн и их сложности дорого стоят.

Известен способ углового разнесения сигналов [Тропосферная связь / Л.И.Яковлев, Г.В.Дедюкин, Э.С.Каграманов и др. - М.: Воениздат, 1984. - 256 с., с.31], который осуществляется с помощью двух облучателей, смещенных относительно фокальной плоскости единого параболического зеркала. В результате этого диаграмма направленности такой антенны имеет двухлепестковую структуру, что позволяет получить два разнесенных в пространстве объема переизлучения, наличие которых приводит к некоррелированности замираний сигналов в каждом из них. Однако при реализации углового разнесения необходимо сочетать разумный компромисс между уменьшением уровня сигнала за счет вывода облучателя из фокальной плоскости и ухода объема переизлучения от линии, соединяющей приемные и передающие пункты, и ростом корреляции при уменьшении угла разнесения. Это отражается на сложности аппаратуры и ее цене.

Известен способ автовыбора оптимальной рабочей частоты, реализованный в тропосферной станции AN/TRC-105WX, разработанной фирмой «Моторолла» [Тропосферная связь / Л.И.Яковлев, Г.В.Дедюкин, Э.С.Каграманов и др. - М.: Воениздат, 1984. - 256 с., с.67]. В этой станции 33 раза в секунду анализируются условия распространения каждой из 16 возможных частот. Анализатором спектра определяется, на какой из анализируемых частот сигнал имеет наименьшее затухание. Выбранная частота фиксируется в пунктах передачи и приема, и работа проводится на данной частоте. Автовыбор оптимальной частоты позволяет обойтись одной антенной, одним передатчиком и одним приемником. Однако время переходов на оптимальные частоты влияет на скорость передачи информации в сторону снижения последней.

Наиболее близким к предлагаемому является способ приема с разнесением по частоте [Нарытник Т.Н. Радиорелейные и тропосферные системы передачи: Учебн. пособие - К.: Концерн «Видавничий Дiм «Iн Юре», 2003. - 336 с., с.192], принятый за прототип.

Способ-прототип заключается в следующем.

При сдвоенном приеме с разнесением по частоте на одну антенну через диплексор подается сигнал от двух передатчиков, работающих на разных частотах, к которым через общий модулятор поступает групповой сигнал от каналообразующей аппаратуры. Приемная станция также имеет одну антенну, к которой через диплексор подключены два приемника, настроенные на соответствующие передатчикам частоты. При определенном разносе между этими заданными частотами замирания радиосигналов на входах приемников оказываются практически некоррелированными, благодаря чему и обеспечивается существенное снижение влияния быстрых замираний радиосигнала на качество приема. Двукратное разнесение по частоте позволяет обойтись одной антенной, но необходимы два передатчика и два приемника с раздельными гетеродинами.

Для повышения помехоустойчивости требуется N-кратное (N>2) разнесение по частоте, но тогда потребуется N передатчиков и N приемников. Мощные передатчики и чувствительные приемники всегда сложны, а к стабильности частоты их возбудителей и гетеродинов предъявляются весьма высокие требования.

Задачей предлагаемого способа является борьба с замираниями при передаче и приеме информации в цифровых тропосферных линиях связи и повышение помехоустойчивости связи при упрощении устройства для осуществления способа.

Для решения поставленной задачи в способе передачи и приема цифровой информации в тропосферных линиях связи, основанном на разнесении сигналов по частоте, согласно изобретению, используют модуляцию центральной частоты излучаемых сигналов с линейной частотной модуляцией (ЛЧМ) по бинарному информационному закону, осуществляют их обработку на согласованном фильтре сжатия и выделяют полезную информацию с помощью селектирующих стробов и тактовых импульсов, наведенных ЛЧМ пилот-сигналом.

Предлагаемый способ заключается в следующем.

Предположим, что на передающей стороне при передаче логического «0» (фиг.1) начальная частота ЛЧМ радиоимпульса уменьшается на (способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 М) (см. фиг.2), а при передаче логической «1» (фиг.1) - увеличивается на (способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 М) (см. фиг.2).

Тогда, аналитическое выражение для информационного сигнала принимает вид

способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372

при передаче логической «1», или

способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372

при передаче логического «0»,

где способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 0=2способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 F0 - начальная угловая частота информационного ЛЧМ сигнала:

способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 - скорость перестройки частоты;

способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 =2способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 ·способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 F - девиация частоты;

способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 и - длительность информационного ЛЧМ сигнала;

способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 М=2способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 FM - величина частотного сдвига.

Величина отстройки начальной частоты информационного ЛЧМ сигнала выбирается из условия

способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372

где способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 ФС - полоса пропускания фильтра сжатия.

Законы изменения частоты излучаемых сигналов показаны на фиг.2.

При приеме информационных ЛЧМ радиоимпульсов (см. фиг.3) на выходе фильтра сжатия появляются сжатые по времени сигналы (см. фиг.4), имеющие временные сдвиги относительно автокорреляционной функции [Ч.Кук, М.Бернфельд. Радиолокационные сигналы. Теория и применение. Перевод с английского под редакцией В.С.Кельзона. М., «Сов. радио», 1971 г., рис.6.2, с.151].

Импульсная характеристика фильтра сжатия g(t) (см. фиг.3) и величина временного сдвига сжатого сигнала (способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 ) на его выходе имеют вид

способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372

Учитывая, что применяется согласованный фильтр сжатия (т.е. способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 ФС=способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 ), из формул (2) и (4) можно получить способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 0,2·способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 и.

Найденная из (4) величина временного сдвига (способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 ) сжатого по времени информационного сигнала (длительностью способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 СЖ), должна удовлетворять условию

способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372

В реальных условиях информационный ЛЧМ сигнал, поступающий на вход приемной стороны, не является точной копией излученного сигнала вследствие замираний. Однако, вследствие того, что замирания являются некоррелированными для частот, разнесенных через 2 МГц [Тропосферная связь / Л.И.Яковлев, Г.В.Дедюкин, Э.С.Каграманов и др. - М.: Воениздат, 1984. - 256 с., с.65], вероятность одновременного глубокого замирания сигнала на этих частотах значительно меньше вероятности столь же глубоких замираний на каждой из них в отдельности.

Исходя из [Ч.Кук, М.Бернфельд. Радиолокационные сигналы. Теория и применение. Перевод с английского под редакцией В.С.Кельзона. М., «Сов. радио», 1971 г., рис.1.8 и (1.19), с.24] при использовании фильтра сжатия отношение пиковых мощностей входного и выходного сигналов равно параметру сжатия способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 И·способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 F. Т.е., например, при потере вследствие замираний 50% полосы полезного сигнала уровень сжатого импульса уменьшится всего в 1,41 раз. Поэтому, благодаря использованию широкополосного (ЛЧМ) сигнала с полосой (соответствующей девиации частоты способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 F), составляющей десятки МГц, обеспечивается надежность связи.

Выделение информационного сигнала (логических «1» и «0») осуществляется с помощью селектирующих импульсов (стробов). С этой целью на вход приемной стороны поступает (см. фиг.2) синхронизирующий ЛЧМ радиоимпульс (пилот-сигнал «ПС») для наведения стробов на информационные сигналы (см. фиг.4).

Параметры пилот-сигнала

способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372

согласованы с импульсной характеристикой фильтра сжатия (3).

Длительность сжатого пилот-сигнала (способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 ПС) при использовании согласованного фильтра сжатия

способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372

Начало формирования первого строба (способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 СИспособ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 (1)) задерживается (см. фиг.5) относительно пилот-сигнала на длительность бланка (ТБЛ)

способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372

где T - период повторения пилот-сигнала.

Длительность первого строба выбирается из условия

способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372

Начало формирования второго строба (способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 СИспособ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 (2)) привязано к заднему фронту первого строба (см. фиг.6).

Длительность второго строба (способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 СИспособ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372 (2)) выбирается из условия

способ передачи и приема цифровой информации в тропосферных линиях   связи, патент № 2394372

Первый строб предназначен для выделения сигнала логического «0», а второй - логической «1» (см. фиг.7).

Для выделения информационного сигнала (с длительностью бита Т) из сигнала, показанного на фиг.7, задаются сдвинутые на Т/2 относительно пилот-сигнала тактовые импульсы (см. фиг.8) с периодом следования, равным Т. Полученный на выходе приемника результирующий информационный сигнал представлен на фиг.9.

Рассмотрим вопрос практической реализации способа.

Перенос модулированного по бинарному закону ЛЧМ сигнала в СВЧ диапазон с последующим усилением и излучением, а также прием СВЧ сигнала с последующим его усилением и преобразованием в промежуточную частоту можно реализовать стандартным способом (например, как в способе-прототипе).

Принятый и усиленный сигнал на промежуточной частоте для дальнейшей обработки оцифровывается с помощью аналого-цифрового преобразователя (АЦП), например АЦП LTC2207IUK (Linear Technology). Сигнал на промежуточной частоте, подготовленный для передачи, можно преобразовать с помощью цифроаналогового преобразователя (ЦАП), например ЦАП AD9786BSV (Analog Devices).

Формирование ЛЧМ сигнала, его модуляцию по информационному закону, согласованную фильтрацию и сжатие принятого сигнала на промежуточной частоте, формирование селектирующих стробов и тактовых импульсов можно реализовать на программируемых логических интегральных схемах (ПЛИС), например ПЛИС EP3C16Q240C8N (Altera).

Таким образом, использование широкополосного (ЛЧМ) сигнала, его модуляции и обработки позволяет снизить влияние замираний при передаче и приеме информации в цифровых тропосферных линиях связи.

Кроме того, известно [Радиоэлектронные системы: Основы построения и теория. Справочник. Изд. 2-е, перераб. и доп. / Под ред. Я.Д.Ширмана. - М.: Радиотехника, 2007. - 512 с.: ил., с.314], что расширение полосы частот сигналов (заметим, в частности, применение ЛЧМ сигнала) позволяет получить:

- повышение информативности радиоэлектронных средств (РЭС) передачи информации, защищенности от помех, электромагнитной совместимости РЭС и скрытности излучения;

- понижение вероятности преследования РЭС военного назначения.

Предлагаемый способ является новым, поскольку из общедоступных сведений не известны ни способы, ни устройства, позволяющие при простейшей (одна антенна, один приемник, один передатчик) реализации, но за счет применения широкополосного сигнала при приемлемой скорости передачи информации осуществлять эффективное снижение влияния замираний на качество приема.

Класс H04B7/22 системы, основанные на распространении радиоволн со вторичным излучением при отражении (например тропосферное распространение радиоволн) 

способ создания канала радиосвязи через искусственный ионосферный ретранслятор -  патент 2518900 (10.06.2014)
способ определения максимально применимой частоты для ионосферной радиосвязи -  патент 2516239 (20.05.2014)
способ передачи и приема цифровой информации в тропосферных линиях связи -  патент 2475962 (20.02.2013)
способ увеличения скорости передачи данных в пакетной сети метеорной связи -  патент 2461125 (10.09.2012)
способ адаптивной радиосвязи в дкмв-диапазоне -  патент 2401511 (10.10.2010)
устройство для определения оптимальных рабочих частот ионосферного радиоканала -  патент 2394371 (10.07.2010)
способ связи с многопараметрической адаптацией -  патент 2323526 (27.04.2008)
способ перехвата радиосигнала радарной системой -  патент 2316115 (27.01.2008)
линия радиосвязи с многопараметрической модуляцией -  патент 2316114 (27.01.2008)
способ радиосвязи и системы его реализации -  патент 2291571 (10.01.2007)
Наверх