система электропитания космического аппарата

Классы МПК:H02J7/34 параллельная работа в сетях с использованием как электрических аккумуляторов, так и других источников постоянного тока, например с целью обеспечения буферного режима
Автор(ы):, , , , , , , , ,
Патентообладатель(и):Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" (RU)
Приоритеты:
подача заявки:
2009-06-29
публикация патента:

Изобретение относится к области космической энергетики, в частности к бортовым системам электропитания космических аппаратов (КА). Согласно изобретению система электропитания космического аппарата состоит из солнечной батареи, стабилизатора напряжения, аккумуляторной батареи, экстремального регулятора мощности, причем стабилизатор напряжения солнечной батареи и разрядное устройство аккумуляторной батареи выполнены в виде мостовых инверторов с общим трансформатором, при этом вход зарядного устройства соединен с выходной обмоткой трансформатора, к другим выходным обмоткам трансформатора подключены устройства питания нагрузок со своими номиналами выходного напряжения переменного или постоянного тока, причем одно из устройств питания нагрузки соединено со стабилизатором солнечной батареи и разрядным устройством аккумуляторной батареи. Техническим результатом является расширение возможностей системы электропитания КА, повышение качества выходного напряжения, снижение затрат на разработку и изготовление, сокращение сроков разработки системы. 1 ил.

система электропитания космического аппарата, патент № 2396666

Формула изобретения

Система электропитания космического аппарата, состоящая из солнечной батареи, подключенной своими плюсовой и минусовой шинами к стабилизатору напряжения, аккумуляторной батареи, подключенной своими плюсовой и минусовой шинами к входу разрядного и выходу зарядного устройств, экстремального регулятора мощности солнечной батареи, соединенного своими входами с датчиком тока, установленным в одной из шин между солнечной батареей и стабилизатором напряжения, разрядным и зарядным устройствами аккумуляторной батареи, а выходом - со стабилизатором напряжения солнечной батареи, отличающаяся тем, что стабилизатор напряжения солнечной батареи и разрядное устройство аккумуляторной батареи выполнены в виде мостовых инверторов с общим трансформатором, при этом вход зарядного устройства соединен с выходной обмоткой трансформатора, к другим же выходным обмоткам трансформатора подключены устройства питания нагрузок со своими номиналами выходного напряжения переменного или постоянного тока, причем одно из устройств питания нагрузки соединено со стабилизатором солнечной батареи и разрядным устройством аккумуляторной батареи.

Описание изобретения к патенту

Предлагаемое изобретение относится к области космической энергетики, конкретнее к бортовым системам электропитания (СЭП) космических аппаратов (КА).

Широко известны системы электропитания КА, состоящие из солнечной батареи, аккумуляторной батареи, а также комплекса электронного оборудования, обеспечивающего совместную работу указанных источников на нагрузку КА, преобразование и стабилизацию напряжения.

Тактико-технические характеристики СЭП, а для космической техники важнейшая из них - удельная мощность, т.е. отношение мощности, вырабатываемой системой электропитания, к ее массе (Руд=Рсэп/Мсэп), зависят прежде всего от удельно-массовых характеристик используемых источников тока, но и в значительной мере от принятой структурной схемы СЭП, формируемой комплексом электронного оборудования СЭП, который определяет режимы эксплуатации источников и эффективность использования их потенциальных возможностей.

Известны системы электропитания КА со структурными схемами, которые обеспечивают: стабилизацию постоянного напряжения на нагрузке (с точностью до 0,5-1,0% от номинального значения), стабилизацию напряжения на солнечной батарее, при котором обеспечивается съем мощности с нее вблизи оптимальной рабочей точки вольт-амперной характеристики (ВАХ), а также реализуются оптимальные алгоритмы управления режимами эксплуатации аккумуляторных батарей, позволяющие обеспечить максимально возможные емкостные параметры в процессе длительного циклирования батарей на орбите. В качестве примера таких систем электропитания приведем проект СЭП для геостационарного связного КА в статье A POWER, FOR A TELECOMMUNICATION SATELLITE. L.Croci, P.Galantini, C.Marana (Proceedings of the European Space Power Conference held in Graz, Austria, 23-27 August 1993 (ESA WPP-054, August 1993). Предложена СЭП мощностью 5 кВт, с напряжением 42 В. КПД использования мощности солнечной батареи - 97%, эффективность использования емкости аккумуляторной батареи - 80% (в конце 15-летнего срока службы КА).

В структурной схеме СЭП предусмотрено разбиение солнечной батареи на 16 секций, каждая из которых регулируется собственным шунтовым стабилизатором напряжения, а выходы секций через развязывающие диоды подключены к общей стабилизированной шине, на которой поддерживается 42 B±1%. Шунтовые стабилизаторы поддерживают на секциях солнечной батареи напряжение 42 B, а проектирование солнечной батареи ведется т.о., чтобы в конце 15 лет оптимальная рабочая точка ВАХ соответствовала этому напряжению.

По аналогичной структурной схеме выполнено абсолютное большинство систем электропитания зарубежных и ряд отечественных КА, таких как, например, HS-702, А-2100 (США), Spacebus-3000, 4000 (Западная Европа), Sesat, «Экспресс-АМ», «Ямал» (Россия) и т.п.

В статье «Приборный комплекс систем электропитания ИСЗ с экстремальным регулированием мощности солнечной батареи», авторы В.С.Кудряшов, М.В.Нестеришин, А.В.Жихарев, В.О.Эльман, А.С.Поляков (ж. Приборостроение, том.47, апрель 2004 г., № 4) приводится описание структурной схемы СЭП с экстремальным регулятором мощности солнечной батареи, показан эффект от такого регулирования на геостационарном спутнике связи «Экспресс-А», составивший по результатам летных измерений до 5% увеличения выходной мощности батареи. По схеме с экстремальным регулятором солнечной батареи выполнены СЭП многих отечественных КА, таких как геостационарные КА «Галс», «Экспресс», высокоорбитальные «Глонасс-М», низкоорбитальные «Гонец» и др.

При достигнутых высоких тактико-технических характеристиках СЭП современных КА они имеют общий недостаток - они не универсальны, что ограничивает область их использования.

Известно, что для питания различной аппаратуры конкретного КА требуются несколько номиналов питающего напряжения, от единиц до десятков и сотен вольт, в то время как в реализованных СЭП формируется единая шина питания постоянного напряжения с одним номиналом, например, 27 B, или 40 B, или 70 B, или 100 B.

При переходе с одного номинала напряжения питания аппаратуры на другой требуется разработка новой системы электропитания с кардинальной переработкой источников тока - солнечной и аккумуляторной батарей и с соответствующими временными и финансовыми издержками.

В особенности этот недостаток сказывается при создании новых модификаций КА на основе базового варианта, что является магистральным направлением в современном космическом аппаратостроении.

Другим недостатком систем является низкая помехозащищенность потребителей электроэнергии на борту космического аппарата. Это объясняется наличием гальванической связи между шинами питания аппаратуры и источниками тока. Поэтому при резких колебаниях нагрузки, например в моменты включения или отключения отдельных потребителей, возникают колебания напряжения на общей выходной шине системы электропитания, т.н. переходные процессы, вызванные всплесками напряжения на внутреннем сопротивлении источников тока.

Предлагается система электропитания с новой структурной схемой, которая позволяет устранить отмеченные выше недостатки известных систем электропитания космических аппаратов.

Наиболее близким техническим решением к предлагаемому является автономная система электропитания КА по патенту РФ 2297706, выбранная в качестве прототипа.

Прототип обладает теми же недостатками, что и рассмотренные выше аналоги.

Задачей предлагаемого изобретения является расширение возможностей системы электропитания КА, повышение качества выходного напряжения, снижение затрат на разработку и изготовление, сокращение сроков разработки системы.

Суть заявляемого изобретения поясняется чертежом.

Система электропитания состоит из солнечной батареи 1, аккумуляторной батареи 2, стабилизатора напряжения солнечной батареи 3, разрядного устройства аккумуляторной батареи 4, зарядного устройства аккумуляторной батареи 5, экстремального регулятора мощности солнечной батареи 6, соединенного своими входами с разрядным 4 и зарядным 5 устройствами и с датчиком тока солнечной батареи 7, а выходом - со стабилизатором напряжения солнечной батареи 3.

Стабилизатор 3 и разрядное устройство 4 выполнены в виде мостовых инверторов. Описания подобных мостовых инверторов приведены, например, в статьях: «Высокочастотные преобразователи напряжения с резонансным переключением», автор А.В.Лукин (ж.ЭЛЕКТРОПИТАНИЕ, научно-технический сборник выпуск 1, под редакцией Ю.И.Конева. Ассоциация «Электропитание», М., 1993), The Series Connected Buck Boost Regulator For High Efficiency DC Voltage Regulation, автор Arthur G. Birchenough (NASA Technical Memorandum 2003-212514, NASA Lewis Research Center, Cleveland, ОН), а также в статье СТРУКТУРНАЯ СХЕМА И СХЕМОТЕХНИЧЕСКИЕ РЕШЕНИЯ КОМПЛЕКСОВ АВТОМАТИКИ И СТАБИЛИЗАЦИИ СЭП НЕГЕРМЕТИЧНОГО ГЕОСТАЦИОНАРНОГО КА С ГАЛЬВАНИЧЕСКОЙ РАЗВЯЗКОЙ БОРТОВОЙ АППАРАТУРЫ ОТ СОЛНЕЧНЫХ И АККУМУЛЯТОРНЫХ БАТАРЕЙ авторов Поляков С.А., Чернышев А.И., Эльман В.О., Кудряшов B.C., см. «Электронные и электромеханические системы и устройства: Сб. научных трудов НПЦ «Полюс». - Томск: МГП «РАСКО» при издательстве «Радио и связь», 2001, 568 с.

Выходные обмотки 9, 10 стабилизатора и разрядного устройства соответственно соединены с общим трансформатором 8 в качестве его первичных обмоток. Солнечная батарея 1 соединена со стабилизатором 3 плюсовой и минусовой шинами, причем в одной из шин установлен упомянутый датчик тока 7. Аккумуляторная батарея 2 соединена с разрядным устройством плюсовой и минусовой шинами. Зарядное устройство 5 своим входом соединено с вторичной обмоткой 11 трансформатора 8, а выходом - с плюсовой и минусовой шинами аккумуляторной батареи 2.

С вторичными обмотками 12 трансформатора 8 соединены устройства питания 13 нагрузок 14 со своими номиналами выходного напряжения переменного тока и с вторичными обмотками 15 трансформатора 8 соединены устройства питания 16 нагрузок 17 постоянного тока со своими номиналами напряжения, одно из устройств питания 18 нагрузки 19 постоянного или переменного тока, соединенного с вторичной обмоткой 20 трансформатора 8, выбрано в качестве основного, и по нему осуществляют стабилизацию напряжения на вторичной обмотке 20 трансформатора 8. С этой целью устройство 18 соединено обратными связями со стабилизатором 3 и разрядным устройством 4.

Формирование переменного напряжения на выходной обмотке 9 стабилизатора 3 обеспечивается его схемой управления 21, которая по определенному закону открывает попарно транзисторы 22, 23 и 24, 25 соответственно.

Аналогичным образом формируется переменное напряжение на выходной обмотке 10 разрядного устройства 4 его схемой управления 26 транзисторами 27, 28 и 29, 30 соответственно.

Экстремальный регулятор мощности 6 с учетом показаний датчика тока 7 и напряжения на солнечной батарее 1 выдает сигнал коррекции на изменение закона открытия транзисторов стабилизатора 3 таким образом, чтобы на солнечной батарее устанавливалось напряжение, равное оптимальному напряжению вольт-амперной характеристики (ВАХ) солнечной батареи.

Система электропитания работает в следующих основных режимах.

1. Питание нагрузок от солнечной батареи.

При превышении мощности солнечной батареи над суммарной мощностью, потребляемой нагрузками, мостовым стабилизатором 3 с помощью обратной связи устройства 18 и стабилизатора 3 на вторичной обмотке 20 трансформатора 8 поддерживается стабильное напряжение на уровне, при котором обеспечивается требуемая стабильность напряжения на нагрузке 19. При этом на вторичных обмотках 11, 12, 15 трансформатора также поддерживается стабильное переменное напряжение с учетом коэффициентов трансформации обмоток. Аккумуляторная батарея 2 полностью заряжена. Зарядное 5 и разрядное 4 устройства выключены, экстремальный регулятор 6 отключен.

2. Заряд аккумуляторной батареи.

При появлении необходимости заряда аккумуляторной батареи зарядное устройство 5 формирует сигнал на включение заряда и обеспечивает его, преобразовывая переменный ток с вторичной обмотки 11 трансформатора 8 в постоянный ток заряда батареи. Сигнал о включении зарядного устройства 5 поступает также на вход экстремального регулятора 6, который включает стабилизатор 3 в режим экстремального регулирования мощности солнечной батареи. Величина зарядного тока аккумуляторной батареи определяется разницей между мощностью солнечной батареи в оптимальной рабочей точке ее вольт-амперной характеристики и суммарной мощностью нагрузок. Разрядное устройство отключено.

3. Питание нагрузки от аккумуляторной батареи.

Такой режим формируется при попадании КА в тень Земли, Луны, при возможных аномальных ситуациях с потерей ориентации панелей солнечной батареи, при выведении КА на орбиту, когда панели солнечной батареи сложены. Мощность солнечной батареи равна нулю, и питание нагрузки обеспечивается за счет разряда аккумуляторной батареи. В этом режиме стабилизация напряжения на вторичной обмотке 20 трансформатора 8 обеспечивается разрядным устройством аналогично первому режиму, с помощью обратной связи устройства 18 с разрядным устройством Стабилизатор 3, экстремальный регулятор 6, зарядное устройство 5 отключены.

4. Питание нагрузки совместно от солнечной батареи и аккумуляторной батареи.

Режим формируется при недостатке мощности солнечной батареи для питания всех подключенных потребителей, например при включении пиковых нагрузок, при маневрах КА для коррекции орбиты, при входах и выходах КА из теневых участков орбиты и т.п.

В этом режиме стабилизатор 3 экстремальным регулятором 6 по сигналу из разрядного устройства 4 включается в режим экстремального регулирования мощности солнечной батареи 1, а недостающая для питания нагрузок мощность добавляется за счет разряда аккумуляторной батареи 2. Стабилизация напряжения на вторичной обмотке 20 трансформатора 8 обеспечивается разрядным устройством 4 с помощью обратной связи устройства 18 с разрядным устройством 4.

Система электропитания работает полностью в автоматическом режиме.

Предлагаемая система электропитания КА имеет следующие преимущества перед известными системами:

обеспечивает на выходе необходимые для питания разнообразных нагрузок КА стабильные номиналы напряжения постоянного или переменного тока, что расширяет ее возможности применения на КА различных классов или при модернизации существующих аппаратов;

более высокое качество напряжения питания нагрузок за счет снижения помех, т.к. шины питания нагрузок гальванически (через трансформатор) развязаны от шин источников тока;

обеспечивается высокая степень унификации системы и возможность ее адаптации к изменяющимся условиям применения на различных типах КА или их модификациях с минимальной доработкой в части устройств питания нагрузок, не затрагивая базовые узлы системы (солнечную и аккумуляторную батареи, стабилизатор, зарядное и разрядное устройства),

обеспечивается возможность независимого проектирования и оптимизации источников тока по напряжению, выбору типоразмеров аккумуляторов, единичных генераторов солнечной батареи и т.п.;

сокращается время и снижаются затраты на разработку и изготовление системы электропитания.

В настоящее время в ОАО «ИСС» им. М.Ф.Решетнева» совместно с рядом смежных предприятий ведется разработка предлагаемой системы электропитания, идет изготовление отдельных лабораторных узлов устройства. На первых образцах мостового инвертора получен кпд, равный 95-96,5%.

Из известных заявителю патентно-информационных материалов не обнаружена совокупность признаков, сходных с совокупностью признаков заявляемого объекта.

Класс H02J7/34 параллельная работа в сетях с использованием как электрических аккумуляторов, так и других источников постоянного тока, например с целью обеспечения буферного режима

автономная система электроснабжения -  патент 2522728 (20.07.2014)
способ электропитания космического аппарата -  патент 2510116 (20.03.2014)
система бесперебойного электропитания, содержащая упрощенную схему индикации наличия напряжения -  патент 2504067 (10.01.2014)
способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли -  патент 2503112 (27.12.2013)
устройство сбалансированного стабилизированного питания потребителей большой мощности -  патент 2502172 (20.12.2013)
устройство и способ для формирования, накопления и передачи электрической энергии -  патент 2496208 (20.10.2013)
способ электропитания космического аппарата -  патент 2488933 (27.07.2013)
электрическая схема автотранспортного средства -  патент 2483412 (27.05.2013)
двунаправленный преобразователь постоянного тока в постоянный для управления накопителем энергии при отводе энергии -  патент 2476978 (27.02.2013)
способ управления автономной системой электропитания космического аппарата -  патент 2467449 (20.11.2012)
Наверх