унифицированная смесь углеродов для определения нефтепродуктов инфракрасным и люминесцентным методами

Классы МПК:C09K11/00 Люминесцентные, например электролюминесцентные, хемилюминесцентные материалы
G01N21/00 Исследование или анализ материалов с помощью оптических средств, те с использованием инфракрасных, видимых или ультрафиолетовых лучей
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие Азовский научно-исследовательский институт рыбного хозяйства (RU)
Приоритеты:
подача заявки:
2009-02-24
публикация патента:

Изобретение относится к области экологической химии применительно к определению нефтепродуктов в элементах водных экосистем. Унифицированная смесь углеводородов имеет следующий состав (весовые %): гексадекан 37.60; изооктан 33.80; бензол 28.57; флуорантрен 0.03. Достигается повышение надежности и точности контроля нефтяных загрязнений. 5 табл.

Формула изобретения

Унифицированная смесь углеводородов для определения нефтепродуктов инфракрасным и люминесцентным методами, содержащая гегсадекан, изооктан и бензол, отличающаяся тем, что она дополнительно содержит люминесцирующий компонент, в качестве которого используют флуорантрен, при следующем соотношении компонентов, вес.%:

Гексадекан37,60
Изооктан 33,80
Бензол28,57
Флуорантрен 0,03

Описание изобретения к патенту

Предлагаемое изобретение относится к области экологической химии и может быть использовано в качестве стандартного образца (стандарта) для определения нефтепродуктов («углеводородного индекса») в элементах водных экосистем.

Нефть и нефтепродукты относятся к одному из важнейших показателей состояния водных экосистем, подлежащих систематическому наблюдению и контролю в рамках национальных и международных программ по защите окружающей среды. Однако осуществление такого контроля является трудной задачей, так как нефть и нефтепродукты представляют собой очень сложную и разнообразную смесь соединений различных классов, обладающих существенно различающимися между собой свойствами. Методическую задачу надежного контроля нефтяного загрязнения усложняет также распределение поступивших в водоем нефтяных компонентов в различные формы миграции - часть компонентов образует пленку на поверхности воды, часть растворяется в воде или образует эмульсию, часть сорбируется на взвесях и донных отложениях. Распределение нефти и нефтепродуктов по миграционным формам одновременно сопровождается изменением их химического состава, т.е. контроль должен осуществляться за очень сложной, неопределенной и постоянно меняющейся смесью нефтяных веществ.

В связи со сложностью состава нефти и продуктов ее переработки Комиссией по унификации методов анализа природных и сточных вод стран-членов СЭВ (1968 г.), а также Международным симпозиумом в Гааге (1968 г.) за "нефтепродукты" было решено принимать сумму неполярных и малополярных соединений, растворимых в гексане, т.е. углеводородную фракцию.

В настоящее время в международной практике содержание нефтепродуктов определяется термином «углеводородный индекс» (УИ), который подразумевает определение только углеводородной фракции. Этот термин в наиболее полной мере отражает фактически определяемые соединения, которые включают углеводороды, как антропогенного, так и естественного происхождения, образующиеся в результате прижизненного и посмертного выделения водными организмами.

Для количественного определения «углеводородного индекса» наибольшее распространение получили оптические методы, основанные на измерении интенсивности поглощения в инфракрасной области спектра и люминесценции.

В этих методах при построении градуировочных графиков используют различные по составу стандартные образцы (стандарты).

При этом надежность результатов определения углеводородного индекса» (УИ) в первую очередь зависит от соответствия состава используемого стандартного образца составу углеводородов, выделенных из исследуемых объектов. Обеспечить такое соответствие практически невозможно, так как углеводороды различных сортов нефти и нефтепродуктов представляют собой достаточно сложную и разнообразную смесь соединений отдельных классов, обладающих существенно различающимися между собой свойствами. Парафино-нафтеновые и ароматические углеводороды преимущественно обладают способностью поглощать соответственно в инфракрасной и ультрафиолетовой областях спектра, полициклические ароматические (3x-ядерные и более) углеводороды способны люминесцировать.

Доля полициклических ароматических углеводородов, обеспечивающих люминесценцию углеводородной фракции, в различных нефтяных образцах незначительна и не превышает 6%. Инфракрасный метод основан на измерении поглощения валентных колебаний С-Н связей метальных и метиленовых групп различных углеводородов, содержание которых в разных сортах нефти и нефтепродуктах составляет от 70 до 100%.

Погрешности, допускаемые за счет разброса градуировочных графиков наиболее легких и тяжелых нефтепродуктов (например, дизельного топлива и мазута), могут достигать десятков и даже сотен процентов. Наибольшую погрешность допускает люминесцентный метод (до 400%), наименьшую (до 20%) - инфракрасный метод (ИК).

Несмотря на большие погрешности люминесцентного метода, он широко используется из-за высокой чувствительности и непосредственного измерения наиболее опасных нефтяных компонентов - полициклических ароматических углеводородов, многие из которых обладают мутагенными и канцерогенными свойствами. В качестве стандарта при построении градуировочных графиков часто используется хризен, при этом результаты выражаются в мкг-экв. хризена (1). Можно использовать углеводороды, выделенные из льяльных вод (2), а также турбинное масло (3). Недостатками известных стандартов является невозможность их использования для инфракрасного метода из-за очень низкой интенсивности ароматических С-Н связей, преобладающих в составе этих стандартов.

Основным преимуществом инфракрасного метода является его наименьшая зависимость от соответствия стандарта и исследуемых нефтепродуктов, что позволяет использовать в качестве стандарта искусственные смеси индивидуальных углеводородов.

Для инфракрасного метода Государственный океанографический институт в качестве стандарта использует смесь гексадекана и диоктилсебационата в объемном соотношении 1:6 (4).

Международный стандарт DIN EN ISO 9377-2-2001 в качестве стандарта использует смеси гексана, пристана и толуола (5).

Для ИК-метода в качестве стандарта наиболее широко используется смесь углеводородов, предложенная Симардом (6), которая состоит из 37,6% гексадекана, 33,8% изооктана и 28,6% бензола (весовые проценты).

Эта смесь выбрана в качестве прототипа.

Недостатками используемых для инфракрасного метода известных стандартных смесей, включая и стандарт Симарда, является отсутствие в их составе люминесцирующих компонентов, что не позволяет использовать эти стандарты в люминесцентном методе определения нефтепродуктов.

В результате использования в инфракрасном и люминесцентном методах отличающихся по составу стандартных образцов получаемые результаты анализа могут различаться в несколько раз.

В таблице 1 представлены результаты определения нефтепродуктов в воде и донных отложениях различных водных объектов, полученных инфракрасным и люминесцентным методами.

В качестве стандартного образца для инфракрасного метода использовали смесь Симарда, а для люминесцентного метода - турбинное масло.

Таблица 1
Анализируемый образец Концентрации нефтепродуктов, мг/л, г/кг Расхождение, %
ИКС-метод (по смеси Симарда) Люминесцентный метод (по турбинному маслу)
ВодаАзовское море 0.16 0.03530
Черное море 0.10 0.02500
р. Дон 0.090.16 180
Донные отложения Азовское море0.22 0.62 280
Черное море0.17 0.43250
р. Дон 0.612.79 460

Из таблицы 1 видно, что результаты анализа одних и тех же образцов, полученные разными методами, использующими различные по составу стандарты, составляет 180-500%.

Целью изобретения является создание унифицированного стандартного образца углеводородов для определения нефтепродуктов одновременно инфракрасным и люминесцентным методами.

Поставленная цель достигается тем, что в известной смеси углеводородов для определения нефтепродуктов, содержащей гексадекан, изооктан и бензол, согласно изобретению дополнительно содержится люминесцирующий компонент, в качестве которого используют флуорантрен, при следующем соотношении компонентов (весовые %):

Гексадекан37,60
Изооктан 33,80
Бензол28.57
Флуорантрен 0.03

Достижение положительного эффекта, согласно цели заявляемого изобретения, обеспечивается составом смеси углеводородов и соотношением компонентов.

Сравнение прототипа и заявляемой смеси показывает, что последняя отличается от прототипа введением люминесцирующего компонента, в качестве которого используют флуорантрен.

В сочетании с гексадеканом, изооктаном и бензолом использование флуорантрена неизвестно.

Таким образом, заявляемое решение соответствует критерию «новизна».

Использование в качестве люминесцирующего компонента флуорантрена обусловлено его стойкостью к процессам деградации и присущими ему люминесцентными характеристиками.

Соотношения гексадекана, изооктана, бензола и флуорантрена выбраны таким образом, чтобы коэффициент погашения этой смеси остался равным коэффициенту погашения смеси Симарда, а интенсивность люминесценции занимала промежуточное положение между наиболее различающимися по составу тяжелыми и легкими нефтепродуктами, например мазутом и дизельным топливом.

Введение в смесь углеводородов заявляемых компонентов в их совокупности и количественном соотношении существенно, т.к. позволяет использовать эту смесь для определения нефтепродуктов не только инфракрасным, но также и люминесцентным методами.

Использование в качестве унифицированного стандарта смеси 4-х индивидуальных углеводородов, обладающих способностью поглощать в инфракрасной области спектра и люминесцировать под воздействием ультрафиолетового излучения, значительно снижает погрешности, связанные с разбросом градуировочных графиков, использующих разные стандарты.

В связи с вышеизложенным заявляемое изобретение соответствует критерию «изобретательский уровень».

Экспериментально был проведен подбор оптимального соотношения между компонентами смеси углеводородов.

При выборе оптимального соотношения между компонентами были использованы соотношения смесей углеводородов, приведенные в таблице 2.

В качестве контрольной смеси была использована смесь Симарда (смесь № 5), являющаяся прототипом заявленного изобретения.

Таблица 2
унифицированная смесь углеродов для определения нефтепродуктов   инфракрасным и люминесцентным методами, патент № 2398004 унифицированная смесь углеродов для определения нефтепродуктов   инфракрасным и люминесцентным методами, патент № 2398004
Компоненты № смеси, соотношения в весовых %
12 34 5
Гексадекан 37.60 37.6037.60 37.60 37.60
Изооктан 33.80 33.8033.80 33.80 33.80
Бензол 28.50 28.5528.57 28.59 28.60
Флуорантрен 0.10 0.050.03 0.01-

Коэффициент градуировочного графика инфракрасного метода, независимо от состава смеси, составляет 0.244. Коэффициенты градуировочного графика люминесцентного метода, полученные при унифицированная смесь углеродов для определения нефтепродуктов   инфракрасным и люминесцентным методами, патент № 2398004 возб=370 нм и унифицированная смесь углеродов для определения нефтепродуктов   инфракрасным и люминесцентным методами, патент № 2398004 люм=460 нм для разных смесей меняются от 0.00055 до 0.00006 (таблица 2). Выбранные длины волн соответствуют максимумам в спектрах возбуждения и люминесценции флуорантрена. Обоснованием для выбора этих длин волн является также то, что эти максимумы характерны для углеводородов, выделенных из различных нефтяных образцов (легких и тяжелых нефтепродуктов, сырых нефтей) и водных объектов.

Данные приведены в таблице 3

Таблица 3
№ смесиКоэффициент градуировочного графика инфракрасного метода Коэффициент градуировочного графика люминесцентного метода
1 0.2440.00006
2 0.2440.00012
3 0.2440.00024
4 0.2440.00055
5 0.244Не люминесцирует

Были проведены измерения растворов углеводородов, выделенных из льяльных вод, с известной концентрацией, определенной весовым методом (который считается арбитражным методом). Концентрации углеводородов, рассчитанные по градуировочным графикам, имеющие различные коэффициенты в зависимости от доли флуорантрена в стандартной смеси, приведены в таблице 4.

Таблица 4
Концентрации углеводородов (весовой метод) мг/мл Концентрации углеводородов (люминесцентный метод), мг/мл
Кгр =0.00006 (0.10% флуорантрена) Кгр=0.00012 (0.05% флуорантрена) Кгр=0.00024 (0.03% флуорантрена) Кгр=0.00055 (0.01% флуорантрена)
0.0080.002 0.004 0.0070.016
0.014 0.0030.007 0.014 0.032
0.100 0.023 0.0460.092 0.210

Из таблицы 4 следует, что наиболее близкие результаты получаются при использовании градуировочного графика, построенного по смеси, содержащей 37.60% гексадекана, 33.80% изооктана, 28,57% бензола и 0.03% флуорантрена, имеющего коэффициент 0.00024. Эта смесь предлагается в качестве унифицированного стандарта для определения нефтепродуктов.

Пример 1. Для подтверждения полученных данных были проведены эксперименты на углеводородах, выделенных из воды Азовского моря. Концентрации углеводородов определяли инфракрасным и люминесцентным методами. Результаты инфракрасного и люминесцентного методов получали по градуировочным графикам, построенным по предлагаемой смеси углеводородов. Результаты приведены в таблице 5.

Таблица 5
№ № Примеры Результаты инфракрасного метода, мг/лРезультаты люминесцентного метода, мг/л Расхождение, %
1Азовское море 0.047 0.04210.6
2 Черное море0.026 0.029 11.5
3 р. Дон, устье Северского Донца0.080 0.079 1.30

Пример 2. Эксперимент проведен на углеводородах, выделенных из воды Черного моря. Концентрации углеводородов определяли так же, как описано в примере 2. Результаты приведены в таблице 5

Пример 3. Эксперимент проведен на углеводородах, выделенных из воды р.Дон. Концентрации углеводородов определяли так же, как описано в примере 2. Результаты приведены в таблице 5

Из таблицы 5 следует, что расхождение результатов инфракрасного и люминесцентного методов при использовании в качестве стандарта предлагаемой смеси углеводородов не превышает 11.5%, что подтверждает возможность использования предлагаемой смеси углеводородов в качестве унифицированного стандартного образца для определения нефтепродуктов.

Предлагаемая в качестве стандарта для определения нефтепродуктов смесь углеводородов является стойкой к процессам деградации, значительно повышает надежность и точность контроля нефтяного загрязнения. Преимуществом предлагаемой смеси является использование индивидуальных компонентов с гарантированной чистотой, что обеспечит стабильность состава стандартного образца.

Использованные источники

1. Massoud M.S., Al-Abdali F., Al-Ghadban A.N., Al-Saravi M. // Environmental pollution. - 1996. - V.93. - № 3. - Р. 271-284.

2. Кленкин А.А., Павленко Л.Ф., Темердашев З.А. Некоторые методические особенности определения уровня нефтяного загрязнения водных экосистем. // Заводская лаборатория. - 2007. - Т.73. - № 2. - С.31-35.

3. ГСО 7950-2001.

4. РД 52.10.243-92. Руководство по химическому анализу морских вод. - С-Петербург: Гидрометеоиздат, 1993. - 264 с.

5. DIN EN ISO 9377-2-2001. /Качество воды. Определение индекса жидких нефтепродуктов.

6. Simard R.G., Hasegawa J., Bandaruk W., Headindton C.E. Infrared spectrometric determination of oil and phenol in water. // Anal. Chem., 1951. - № 23. - Р.1384-13789 (прототип).

Класс C09K11/00 Люминесцентные, например электролюминесцентные, хемилюминесцентные материалы

cd2o2s материал для использования в компьютерной томографии -  патент 2528671 (20.09.2014)
применение бис(2,4,7,8,9-пентаметилдипирролилметен-3-ил)метана дигидробромида в качестве флуоресцентного сенсора на катион цинка(ii) -  патент 2527461 (27.08.2014)
конвертер вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния siox на кремниевой подложке -  патент 2526344 (20.08.2014)
люминофор белого свечения на основе двойного ванадата цезия цинка -  патент 2526078 (20.08.2014)
новые разветвленные олигоарилсиланы и способ их получения -  патент 2524960 (10.08.2014)
осветительное устройство на белых светодиодах -  патент 2524690 (10.08.2014)
люминесцентное покрытие для увеличения эффективности преобразования энергии падающего света и способ его получения -  патент 2524234 (27.07.2014)
осветительное устройство на белых светодиодах, возбуждаемое импульсным током -  патент 2522461 (10.07.2014)
способ обработки цинкооксидных люминофоров -  патент 2520892 (27.06.2014)
осветительное устройство -  патент 2519242 (10.06.2014)

Класс G01N21/00 Исследование или анализ материалов с помощью оптических средств, те с использованием инфракрасных, видимых или ультрафиолетовых лучей

способ определения бензойной кислоты в воде -  патент 2529810 (27.09.2014)
способ определения мольной доли li2o в монокристаллах linbo3 -  патент 2529668 (27.09.2014)
сорбционно-спектрофотометрический способ определения свинца (ii) -  патент 2529660 (27.09.2014)
способ определения палеотемператур катагенеза безвитринитовых отложений по оптическим характеристикам микрофитофоссилий -  патент 2529650 (27.09.2014)
способ определения ориентации кристаллографических осей в анизотропном электрооптическом кристалле класса 3m -  патент 2528609 (20.09.2014)
антенна терагерцового частотного диапазона -  патент 2528243 (10.09.2014)
газоанализатор -  патент 2528129 (10.09.2014)
устройство для определения концентрации гемоглобина и степени оксигенации крови в слизистых оболочках -  патент 2528087 (10.09.2014)
способ определения отклонения угла наклона плоскости поляризации оптического излучения -  патент 2527654 (10.09.2014)
применение бис(2,4,7,8,9-пентаметилдипирролилметен-3-ил)метана дигидробромида в качестве флуоресцентного сенсора на катион цинка(ii) -  патент 2527461 (27.08.2014)
Наверх