способ получения присадки к смазочным маслам
Классы МПК: | C10M159/22 содержащие фенольные радикалы |
Автор(ы): | Левин Александр Яковлевич (RU), Селезнева Ирина Ефимовна (RU), Монин Святослав Владимирович (RU), Трофимова Галина Львовна (RU), Иванова Ольга Владимировна (RU), Будановская Галина Александровна (RU) |
Патентообладатель(и): | Селезнева Ирина Ефимовна (RU) |
Приоритеты: |
подача заявки:
2009-01-23 публикация патента:
10.09.2010 |
Изобретение относится к способу получения модифицированной сверхщелочной алкилфенольной присадки к смазочным маслам. Сущность изобретения: на первой ступени осуществляют взаимодействие (C 8-C18)-алкилфенола, элементарной серы и оксида или гидроксида кальция в присутствии этиленгликоля при молярном соотношении оксид или гидроксид кальция:этиленгликоль, равном 1:0,2-0,5. Затем на второй ступени в присутствии модифицирующих добавок осуществляют взаимодействие полученного продукта с дополнительным количеством оксида или гидроксида кальция и этиленгликоля при их молярном соотношении, равном 1:0,2-0,6, с последующей обработкой диоксидом углерода при скорости пропускания диоксида углерода, равной 0,02-0,04 моль/мин·моль алкилфенола. Модифицирующие добавки выбраны из группы: маслорастворимые сульфокислоты, сульфонаты, высшие жирные кислоты, алкенилянтарная кислота (C18 -C50), сукцинимид или их смеси. Модифицирующие добавки предпочтительно используют в количестве 3-45 мас.% на алкилфенол. Технический результат - повышение коллоидной стабильности присадки при увеличении щелочного числа до 300 мг KOH/г и выше, а также улучшение антиокислительных и антинагарных свойств. 1 з.п. ф-лы, 1 табл.
Формула изобретения
1. Способ получения присадки к смазочным маслам путем взаимодействия при повышенной температуре (C8-C18)алкилфенола, элементарной серы и оксида или гидроксида кальция в присутствии этиленгликоля при молярном соотношении оксид или гидроксид кальция:этиленгликоль, равном 1:0,2-0,5, на первой ступени, взаимодействия полученного продукта с дополнительным количеством оксида или гидроксида кальция и этиленгликоля при их молярном соотношении, равном 1:0,2-0,6, на второй ступени с последующей обработкой диоксидом углерода, отличающийся тем, что вторую ступень процесса проводят в присутствии модифицирующих добавок, выбранных из группы: маслорастворимые сульфокислоты, сульфонаты, высшие жирные кислоты, алкенилянтарная кислота (C18-C50), сукцинимид или их смеси, при скорости пропускания диоксида углерода, равной 0,02-0,04 моль/мин·моль алкилфенола.
2. Способ по п.1, отличающийся тем, что модифицирующие добавки используют в количестве 3-45 мас.% на алкилфенол.
Описание изобретения к патенту
Изобретение относится к смазочным составам, в частности к способу получения модифицированной сверхщелочной алкилфенольной присадки к смазочным маслам.
Известен способ получения сверхщелочных алкилфенольных присадок взаимодействием осерненного алкилфенола с оксидом или гидроксидом магния путем метанольной карбонатации (в растворе низкомолекулярного спирта) в присутствии модифицирующих добавок, в качестве которых используют сульфокислоту или сульфонат, карбоновую кислоту или ее ангидрид (пат. США № 4049560, 1977); использовать сульфонат предлагается также в других патентных источниках (пат. США № 4865754, 1989; EP № 1694802, 2006).
Известен также способ получения сверхщелочных алкилфенольных присадок метанольной карбонатацией (толуол + метанол + вода) в присутствии в качестве модифицирующей добавки стеариновой кислоты или ее смеси с сульфокислотой (EP № 1903093, 2008).
Недостатком этих способов является использование метанола - сильного яда - в качестве растворителя, что требует в процессе производства полной герметичности оборудования, усложняет и удорожает технологию. Кроме того, присадки, полученные метанольной карбонатацией, не обладают достаточно высоким уровнем коллоидной стабильности, что приводит к ухудшению эксплуатационных свойств моторных масел, содержащих в своем составе эти присадки.
В процессе получения сверхщелочных алкилфенольных присадок в присутствии модифицирующих добавок - карбоновых кислот - в качестве растворителя могут быть также использованы высшие спирты (например, WO 8803944, 1988).
Недостатком применения в качестве растворителя высших спиртов является необходимость включения в схему производства узла их регенерации, что существенно усложняет и удорожает технологию. Кроме того, присутствие в процессе высших спиртов отрицательно влияет на некоторые эксплуатационные характеристики присадок.
Наиболее близким по технической сущности к предлагаемому является способ получения присадки к смазочным маслам взаимодействием при температуре 150-190°С (C8-C18)-алкилфенола, элементарной серы и оксида или гидроксида кальция в присутствии этиленгликоля на первой ступени с последующим взаимодействием полученного продукта с дополнительным количеством оксида или гидроксида кальция в присутствии дополнительного количества этиленгликоля на второй ступени, с последующей обработкой полученного продукта диоксидом углерода. Процесс проводят при молярном соотношении оксид или гидроксид кальция:этиленгликоль 1:0,2-0,5 на первой ступени и 1:0,2-0,6 на второй ступени (пат. РФ № 1637315, 2001).
По этому способу присадку получают без использования растворителя, применяя определенные соотношения реагентов, что позволяет значительно упростить технологию и улучшить термическую и гидролитическую стабильность присадки.
Однако этот способ не обеспечивает достижение достаточной коллоидной стабильности при получении присадки со щелочным числом порядка 300 мг KOH/г. Полученная по способу присадка не обладает достаточно высоким уровнем антиокислительных и антинагарных свойств, что не позволяет использовать ее в составе моторных масел, предназначенных для двигателей, работающих в тяжелых эксплуатационных условиях.
Задачей предлагаемого изобретения является разработка способа получения присадки к смазочным маслам, позволяющего улучшить коллоидную стабильность присадки при существенном увеличении ее щелочности, а также обеспечить повышение уровня ее антиокислительных и антинагарных свойств.
Поставленная задача решается предлагаемым способом получения присадки к смазочным маслам путем взаимодействия при повышенной температуре (C8-C 18)-алкилфенола, элементарной серы и оксида или гидроксида кальция в присутствии этиленгликоля при молярном соотношении оксид или гидроксид кальция: этиленгликоль, равном 1:0,2-0,5, на первой ступени, взаимодействия полученного продукта с дополнительным количеством оксида или гидроксида кальция и этиленгликоля при их молярном соотношении 1:0,2-0,6 на второй ступени, с последующей обработкой диоксидом углерода. Способ отличается тем, что вторую ступень процесса проводят в присутствии модифицирующих добавок, выбранных из группы: маслорастворимые сульфокислоты, сульфонаты, высшие жирные кислоты, алкенилянтарная кислота (C18 -C50), сукцинимид или их смеси, при скорости пропускания диоксида углерода, равной 0,02-0,04 моль/мин·моль алкилфенола.
Уменьшение скорости пропускания диоксида углерода (менее 0,02 моль/мин·моль алкилфенола) недопустимо, так как это приводит к увеличению продолжительности нахождения продукта в зоне высоких температур в процессе карбонатации и, как следствие, к ухудшению антинагарных и антиокислительных свойств присадки. Увеличение скорости (выше 0,04 моль/мин·моль алкилфенола) также недопустимо, поскольку приводит к резкому снижению уровня коллоидной стабильности полученной присадки.
Модифицирующие добавки в процессе получения присадки используют в количестве 3-45 мас.% на АФ.
Следует особо подчеркнуть, что использование модифицирующих добавок осуществляют в отличие от известных способов без применения растворителя, что упрощает и удешевляет технологию.
Использование в процессе получения присадки модифицирующих добавок при определенной скорости пропускания углекислого газа в заявленном способе приводит к улучшению коллоидной стабильности при существенном увеличении щелочности, позволяет обеспечить повышение уровня ее антиокислительных и антинагарных свойств.
Способ осуществляют по общей методике: на первой ступени смесь компонентов (С8 -С18)-алкилфенола (А), элементарной серы (Б) и оксида или гидроксида кальция (В) при перемешивании в токе азота нагревают до температуры 150-165°С и добавляют этиленгликоль (Г) при молярном соотношении В:Г, равном 1:0,2-0,5. Температуру реакционной смеси постепенно поднимают до 180-190°С и добавляют масло-разбавитель (Б). Реакционную смесь выдерживают при перемешивании в токе азота до полного удаления растворенного в нем сероводорода, образовавшегося в результате реакции.
На второй ступени к реакционной смеси добавляют дополнительное количество компонентов В, Г (при 165°С) и модифицирующую добавку (Д) при молярном соотношении В:Г, равном 1:0,2-0,6. Обработку диоксидом углерода ведут при 170°С при скорости пропускания диоксида углерода, равной 0,02-0,04 моль/мин·моль АФ.
Изобретение иллюстрируется следующими примерами.
Пример 1. (по прототипу)
Загрузка реагентов | 1 ступень | 2 ступень |
А. Изононилфенол, г | 100,0 | - |
Б. Сера элементарная, г | 14,9 | - |
В. Гидроксид кальция, г | 10,0 (0,14 моль) | 30,0 (0,41 моль) |
Г. Этиленгликоль, г | 3,0 (0,05 моль) | 12,0 (0,19 моль) |
Д. Модифицирующая добавка | - | - |
Е. Масло-разбавитель | 80,0 | - |
На первой ступени смесь компонентов А, Б, В при перемешивании в токе азота нагревают до 165°С и добавляют компонент Г. Температуру реакционной смеси постепенно поднимают до 180°С и добавляют компонент Е.
На второй ступени к реакционной смеси добавляют компонент В, затем при температуре 165°С - компонент Г. Обработку диоксидом углерода ведут при 170°С в течение 4 ч.
После удаления из продукта твердого остатка и летучих компонентов получена присадка со щелочным числом 250 мг KOH/г, кинематической вязкостью при 100°С 264 мм 2/с, содержанием серы 3,7 мас.%.
Пример 2
Загрузка реагентов | 1 ступень | 2 ступень |
А. Изододецилфенол, г | 90,0 | - |
Б. Сера элементарная, г | 15,0 | - |
В. Гидроксид кальция, г | 11,1 (0,15 моль) | 48,3 (0,65 моль) |
Г. Этиленгликоль, г | 1,9 (0,03 моль) | 18,0 (0,28 моль) |
Д. Сульфокислота, г * | - | 10,0 |
Е. Масло-разбавитель, г | 100,0 | - |
*) сульфокислота получена сульфированием масляного дистиллята с кинематической вязкостью 14 мм2/с при температуре 100°С. |
На первой ступени смесь компонентов А, Б, В при перемешивании в токе азота нагревают до 165°С и добавляют компонент Г. Температуру реакционной смеси постепенно поднимают до 180°С, после чего добавляют компонент Е. Реакционную смесь выдерживают при перемешивании в токе азота до полного удаления растворенного в нем сероводорода, образовавшегося в результате реакции.
На второй ступени к реакционной смеси добавляют дополнительное количество компонентов В, Г (при 165°С) и компонент Д. Обработку диоксидом углерода ведут при 170°С и скорости подачи газа 0,04 моль/мин·моль АФ.
После удаления из продукта твердого остатка и летучих компонентов получена присадка со щелочным числом 303,4 мг KOH/г, кинематической вязкостью при 100°С 184 мм2/с, содержанием серы 4,1 мас.%.
Пример 3
Загрузка реагентов | 1 ступень | 2 ступень |
А. Изододецилфенол, г | 90,0 | - |
Б. Сера элементарная, г | 15,0 | - |
В. Гидроксид кальция, г | 11,1 (0,15 моль) | 48,3 (0,65 моль) |
Г. Этиленгликоль, г | 1,9 (0,03 моль) | 25,0 (0,39 моль) |
Д. Сульфонат кальция (Хайтек-614), г | - | 10,0 |
Е. Масло-разбавитель, г | 100,0 | - |
На первой ступени смесь компонентов А, Б, В при перемешивании в токе азота нагревают до 165°С и добавляют компонент Г. Температуру реакционной смеси постепенно поднимают до 180°С, после чего добавляют компонент Е. Реакционную смесь выдерживают при перемешивании в токе азота до полного удаления растворенного в нем сероводорода, образовавшегося в результате реакции.
На второй ступени к реакционной смеси добавляют дополнительное количество компонентов В, Г (при 165°С) и компонент Д. Обработку диоксидом углерода ведут при 170°С и скорости подачи газа 0,04 моль/мин·моль АФ.
После удаления из продукта твердого остатка и летучих компонентов получена присадка со щелочным числом 308,5 мг KOH/г, кинематической вязкостью при 100°С 220 мм 2/с, содержанием серы 4,0 мас.%
Пример 4
Загрузка реагентов | 1 ступень | 2 ступень |
А. Изононилфенол, г | 97,0 | - |
Б. Сера элементарная, г | 20,0 | - |
В. Гидроксид кальция, г | 10,0 (0,14 моль) | 49,4 (0,67 моль) |
Г. Этиленгликоль, г | 3,0 (0,05 моль) | 19,6 (0,31 моль) |
Д. Октадецилянтарная кислота, г | - | 5,0 |
Е. масло-разбавитель, г | 100 | - |
На первой ступени смесь компонентов А, Б, В при перемешивании в токе азота нагревают до 165°С и добавляют компонент Г. Температуру реакционной смеси постепенно поднимают до 190°С, после чего добавляют компонент Е. Реакционную смесь выдерживают при перемешивании в токе азота до полного удаления растворенного в нем сероводорода, образовавшегося в результате реакции.
На второй ступени к реакционной смеси добавляют дополнительное количество компонентов В, Г (при 165°С) и компонент Д. Обработку диоксидом углерода ведут при 170°С и скорости подачи газа 0,02 моль/мин·моль АФ.
После удаления из продукта твердого остатка и летучих компонентов получена присадка со щелочным числом 307,0 мг KOH/г, кинематической вязкостью при 100°С 187 мм2/с, содержанием серы 4,9 мас.%.
Пример 5
Загрузка реагентов | 1 ступень | 2 ступень |
А. Изононилфенол, г | 95,0 | - |
Б. Сера элементарная, г | 17,8 | - |
В. Гидроксид кальция, г | 11,1(0,15 моль) | 48,3 (0,65 моль) |
Г. Этиленгликоль, г | 4,2 (0,06 моль) | 18,0 (0,28 моль) |
Д. Сукцинимид (С-5А), г | - | 5,0 |
Е. Масло-разбавитель, г | 100 | - |
На первой ступени смесь компонентов А, Б, В при перемешивании в токе азота нагревают до 150°С и добавляют компонент Г. Температуру реакционной смеси постепенно поднимают до 190°С, после чего добавляют компонент Е. Реакционную смесь выдерживают при перемешивании в токе азота до полного удаления растворенного в нем сероводорода, образовавшегося в результате реакции.
На второй ступени к реакционной смеси добавляют дополнительное количество компонентов В, Г (при 165°С) и компонент Д. Обработку диоксидом углерода ведут при 170°С и скорости подачи газа 0,02 моль/мин·моль АФ.
После удаления из продукта твердого остатка и летучих компонентов получена присадка со щелочным числом 308,5 мг KOH/г, кинематической вязкостью при 100°С 201 мм2/с, содержанием серы 4,2 мас.%.
Пример 6
Загрузка реагентов | 1 ступень | 2 ступень |
А. Октилфенол, г | 68,9 | - |
Б. Сера элементарная, г | 11,5 | - |
В. Гидроксид кальция, г | 11,1 (0,15 моль) | 38,9 (0,53 моль) |
Г. Этиленгликоль, г | 4,8 (0,075 моль) | 20,4 (0,32 моль) |
Д. Смесь 65% сульфоната кальция (С-150) и 35% сукцинимида (С-5А) | 31,1 | |
Е. Масло-разбавитель, г | 100 | - |
На первой ступени смесь компонентов А, Б, В при перемешивании в токе азота нагревают до 165°С и добавляют компонент Г. Температуру реакционной смеси постепенно поднимают до 180°С, после чего добавляют компонент Е. Реакционную смесь выдерживают при перемешивании в токе азота до полного удаления растворенного в нем сероводорода, образовавшегося в результате реакции.
На второй ступени к реакционной смеси добавляют дополнительное количество компонентов В, Г (при 165°С) и компонент Д. Обработку диоксидом углерода ведут при 170°С и скорости подачи газа 0,03 моль/мин·моль АФ.
После удаления из продукта твердого остатка и летучих компонентов получена присадка со щелочным числом 303,4 мг KOH/г, кинематической вязкостью при 100°С 218 мм 2/с, содержанием серы 3,9 мас.%.
Пример 7
Загрузка реагентов | 1 ступень | 2 ступень |
А. С8 -Алкилфенол, г | 95,0 | - |
Б. Сера элементарная, г | 16,0 | - |
В. Гидроксид кальция, г | 10,0 (0,14 моль) | 48,3 (0,65 моль) |
Г. Этиленгликоль, г | 3,0 (0,05 моль) | 18,0 (0,28 моль) |
Д. Стеариновая кислота, г | - | 5,0 |
Е. Масло-разбавитель, г | 100 | - |
На первой ступени смесь компонентов А, Б, В при перемешивании в токе азота нагревают до 150°С и добавляют компонент Г. Температуру реакционной смеси постепенно поднимают до 180°С, после чего добавляют компонент Е. Реакционную смесь выдерживают при перемешивании в токе азота до полного удаления растворенного в нем сероводорода, образовавшегося в результате реакции.
На второй ступени к реакционной смеси добавляют дополнительное количество компонентов В, Г (при 165°С) и компонент Д. Обработку диоксидом углерода ведут при 170°С и скорости подачи газа 0,02 моль/мин·моль АФ.
После удаления из продукта твердого остатка и летучих компонентов получена присадка со щелочным числом 301,0 мг КОН/г, кинематической вязкостью при 100°С 192 мм2/с, содержанием серы 3,8 мас.%.
Пример 8
Загрузка реагентов | 1 ступень | 2 ступень |
А. Изододецилфенол, г | 90,0 | - |
Б. Сера элементарная, г | 15,0 | - |
В. Гидроксид кальция, г | 10,0 (0,014 моль) | 49,4 (0,67 моль) |
Г. Этиленгликоль, г | 3,0 (0,05 моль) | 18,0 (0,28 моль) |
Д. Смесь олеиновой (50%) и стеариновой (50%) кислот, г | - | 10 |
Е. Масло-разбавитель, г | 100 | - |
На первой ступени смесь компонентов А, Б, В при перемешивании в токе азота нагревают до 165°С и добавляют компонент Г. Температуру реакционной смеси постепенно поднимают до 180°С, после чего добавляют компонент Е. Реакционную смесь выдерживают при перемешивании в токе азота до полного удаления растворенного в нем сероводорода, образовавшегося в результате реакции.
На второй ступени к реакционной смеси добавляют дополнительное количество компонентов В, Г (при 165°С) и компонент Д. Обработку диоксидом углерода ведут при 170°С и скорости подачи газа 0,03 моль/мин·моль АФ.
После удаления из продукта твердого остатка и летучих компонентов получена присадка со щелочным числом 305,7 мг KOH/г, кинематической вязкостью при 100°С 256 мм 2/с, содержанием серы 3,6 мас.%.
Пример 9
Загрузка реагентов | 1 ступень | 2 ступень |
А. Изододецилфенол, г | 90,0 | - |
Б. Сера элементарная, г | 15,0 | - |
В. Гидроксид кальция, г | 10 (0,14 моль) | 49,4 (0,67 моль) |
Г. Этиленгликоль, г | 3,0 (0,0$ моль) | 18,0 (0,28 моль) |
Д. Смесь пальмитиновой (60%) и стеариновой (40%) кислот, г | - | 10,0 |
Е. Масло-разбавитель, г | 100,0 | - |
На первой ступени смесь компонентов А, Б, В при перемешивании в токе азота нагревают до 165°С и добавляют компонент Г. Температуру реакционной смеси постепенно поднимают до 180°С, после чего добавляют компонент Е. Реакционную смесь выдерживают при перемешивании в токе азота до полного удаления растворенного в нем сероводорода, образовавшегося в результате реакции.
На второй ступени к реакционной смеси добавляют дополнительное количество компонентов В, Г (при 165°С) и компонент Д. Обработку диоксидом углерода ведут при 170°С и скорости подачи газа 0,03 моль/мин·моль АФ.
После удаления из продукта твердого остатка и летучих компонентов получена присадка со щелочным числом 300,4 мг KOH/г, кинематической вязкостью при 100°С 234 мм 2/с, содержанием серы 3,4 мас.%.
Пример 10
Загрузка реагентов | 1 ступень | 2 ступень |
А. Изононилфенол, г | 95,0 | - |
Б. Сера элементарная, г | 16,0 | - |
В. Гидроксид кальция, г | 10,0 (0,014 моль) | 48,3 (0,65 моль) |
Г. Этиленгликоль, г | 3,0 (0,05 моль) | 18,0 (0,28 моль) |
Д. Олеиновая кислота, г | - | 5,0 |
Е. Масло-разбавитель, г | 100,0 | - |
На первой ступени смесь компонентов А, Б, В при перемешивании в токе азота нагревают до 165°С и добавляют компонент Г. Температуру реакционной смеси постепенно поднимают до 180°С, после чего добавляют компонент Е. Реакционную смесь выдерживают при перемешивании в токе азота до полного удаления растворенного в нем сероводорода, образовавшегося в результате реакции.
На второй ступени к реакционной смеси добавляют дополнительное количество компонентов В, Г (при 165°С) и компонент Д. Обработку диоксидом углерода ведут при 170°С и скорости подачи газа 0,04 моль/мин·моль АФ.
После удаления из продукта твердого остатка и летучих компонентов получена присадка со щелочным числом 303,2 мг KOH/г, кинематической вязкостью при 100°С 268 мм 2/с, содержанием серы 3,9 мас.%.
Пример 11
Загрузка реагентов | 1 ступень | 2 ступень |
А. Изононилфенол, г | 87,0 | - |
Б. Сера элементарная, г | 14,5 | - |
В. Гидроксид кальция, г | 10,0 (0,14 моль) | 49,4 (0,67 моль) |
Г.Этиленгликоль, г | 3,0 (0,05 моль) | 18,0 (0,28 моль) |
Д. Смесь октадецилянтарной (70%) и олеиновой (30%) кислот, г | - | 13,0 |
Е. Масло-разбавитель, г | 100,0 | - |
На первой ступени смесь компонентов А, Б, В при перемешивании в токе азота нагревают до 165°С и добавляют компонент Г. Температуру реакционной смеси постепенно поднимают до 180°С, после чего добавляют компонент Е. Реакционную смесь выдерживают при перемешивании в токе азота до полного удаления растворенного в нем сероводорода, образовавшегося в результате реакции.
На второй ступени к реакционной смеси добавляют дополнительное количество компонентов В, Г (при 165°С) и компонент Д. Обработку диоксидом углерода ведут при 170°С и скорости подачи газа 0,03 моль/мин·моль АФ.
После удаления из продукта твердого остатка и летучих компонентов получена присадка со щелочным числом 308,3 мг KOH/г, кинематической вязкостью при 100°С 201,0 мм 2/с, содержанием серы 3,5 мас.%.
Пример 12
Загрузка реагентов | 1 ступень | 2 ступень |
А. Изононилфенол, г | 92,0 | - |
Б. Сера элементарная, г | 15,5 | - |
В. Гидроксид кальция, г | 11,1 (0,15 моль) | 48,3 (0,65 моль) |
Г. Этиленгликоль, г | 1,9 (0,03 моль) | 18,0 (0,28 моль) |
Д. Смесь сульфокислоты* (70%) и олеиновой кислоты (30%), г | - | 8,0 |
Е. Масло-разбавитель, г | 100 | - |
*) сульфокислота получена сульфированием масляного дистиллята с кинематической вязкостью 14 мм2/с при температуре 100°С. |
На первой ступени смесь компонентов А, Б, В при перемешивании в токе азота нагревают до 165°С и добавляют компонент Г. Температуру реакционной смеси постепенно поднимают до 180°С, после чего добавляют компонент Е. Реакционную смесь выдерживают при перемешивании в токе азота до полного удаления растворенного в нем сероводорода, образовавшегося в результате реакции.
На второй ступени к реакционной смеси добавляют дополнительное количество компонентов В, Г (при 165°С) и компонент Д. Обработку диоксидом углерода ведут при 170°С и скорости подачи газа 0,04 моль/мин·моль АФ.
После удаления из продукта твердого остатка и летучих компонентов получена присадка со щелочным числом 305,7 мг KOH/г, кинематической вязкостью при 100°С 209,0 мм2/с, содержанием серы 4,2 мас.%.
Аналогичные результаты получены при использовании оксида кальция в присутствии воды.
Полученные присадки испытывают в виде их растворов в минеральном масле.
Коллоидную стабильность (КС) оценивают по количеству осадка в верхнем слое разбавленного 1:1 бензином 10%-ного раствора присадки в масле после его центрифугирования при 3000 об/мин в течение 30 мин (Методы анализа, исследований и испытаний нефтей и нефтепродуктов. Под ред. Е.М.Никонорова, М., 1998, ч.3, с.108-142).
Антинагарные и антиокислительные свойства присадки в составе композиции моторного масла М-10ДМ оценивают на лабораторной установке высокотемпературного каталитического окисления при температуре 230°С в течение 5 часов. (Композиция испытуемого масла содержит, помимо алкилфенольной присадки, среднещелочной сульфонат кальция и диалкилдитиофосфат цинка. Образцы готовят на одном базовом масле). Обобщенный показатель антиокислительных и антинагарных свойств (ОП5) рассчитывают по формуле
ОП5= 40·D, где
40 - прирост кинематической вязкости при 40°С испытуемого масла в результате окисления;
D - оптическая плотность испытуемого масла после окисления. Чем ниже значение ОП5, тем лучше свойства масла с испытуемой присадкой (А.Я.Левин, Г.Л.Трофимова и др. Новые лабораторные методы оценки качества масел и присадок. ХТТМ, № 2, 2006, с.50-51).
Результаты оценки качества присадок представлены в таблице.
Из данных таблицы следует, что все образцы, синтезированные по предлагаемому способу, обладают повышенной коллоидной стабильностью и более высоким уровнем антиокислительных и антинагарных свойств по сравнению с прототипом.
Таким образом, использование модифицирующих добавок в условиях предлагаемого способа приводит к улучшению коллоидной стабильности присадок при увеличении их щелочного числа до 300 мг KOH/г и выше, а также к улучшению антиокислительных и антинагарных свойств. Это дает возможность применять присадки, полученные предлагаемым способом, в моторных маслах различных групп в меньших концентрациях, что позволяет существенно снизить затраты на легирование при производстве моторных масел. Для разных марок это снижение составляет 20-25%.
Результаты оценки качества присадок | ||
Пример | Свойства присадок | |
Коллоидная стабильность (КС), % | Антиокислительные и антинагарные свойства (ОП5), усл.ед. | |
1 (прототип) | 84,0 | 27,5 |
2 | 86,0 | 26,5 |
3 | 88,5 | 26,0 |
4 | 90,0 | 26,0 |
5 | 92,0 | 24,5 |
6 | 92,5 | 24,0 |
7 | 88,0 | 26,0 |
8 | 90,0 | 25,5 |
9 | 88,5 | 26,0 |
10 | 91,0 | 25,5 |
11 | 92,0 | 24,5 |
12 | 87,0 | 25,0 |
Класс C10M159/22 содержащие фенольные радикалы