способ поверхностного упрочнения прокатных валков

Классы МПК:C21D1/09 непосредственным действием электрической или волновой энергии; облучением частицами
Автор(ы):, , , , ,
Патентообладатель(и):Открытое акционерное общество "Новокузнецкий металлургический комбинат" (RU)
Приоритеты:
подача заявки:
2009-09-07
публикация патента:

Изобретение относится к черной металлургии, в частности к поверхностному упрочнению прокатных валков. Для повышения качества упрочненного слоя, а также стойкости и работоспособности прокатных валков проводят обработку поверхности сжатой сканирующей дугой прямого действия в аргоне, при этом упрочнение поверхности прокатных валков осуществляют пульсирующей дугой при силе тока 300-250 А, напряжении 18-30 В с наложением полос по винтовой линии при скорости перемещения дуги по поверхности 1,0-1,3 м/мин, с зазором между вольфрамовым электродом и упрочняемой поверхностью валка 10-12 мм, причем защиту электрода упрочняемой поверхности валка от окисления осуществляют аргоном при его расходе 600-700 л/час. 2 табл., 1 ил.

способ поверхностного упрочнения прокатных валков, патент № 2398892

Формула изобретения

Способ поверхностного упрочнения прокатных валков, включающий обработку поверхности сжатой сканирующей дугой прямого действия, возбуждаемой между вольфрамовым электродом и упрочняемой поверхностью при силе тока 300-250 A с наложением полос по винтовой линии, защиту электрода и упрочняемой поверхности валка от окисления аргоном, отличающийся тем, что упрочнение поверхности прокатных валков осуществляют пульсирующей дугой при напряжении 18-30 В, скорости перемещения дуги по поверхности 1,0-1,3 м/мин с зазором между электродом и упрочняемой поверхностью валка 10-12 мм и при расходе аргона 600-700 л/ч.

Описание изобретения к патенту

Изобретение относится к черной металлургии, в частности к поверхностному упрочнению прокатных валков.

Известен способ упрочнения прокатного валка, включающий механическую обточку валка, нагрев под наплавку со скоростью 50-100°С/ч до температуры 250-300°С, дуговую наплавку при плотности 40-45 А/мм 2 со скоростью наплавки 25-30 м/ч и проведении отпуска при температуре 300-400°С с выдержкой в течении 1,5-2 ч [1].

Существенным недостатком данного способа являются значительная длительность упрочняющей обработки за счет проведения нескольких операций, а также недостаточная стойкость и прочность упрочненного слоя прокатного валка.

Известен также способ термической обработки прокатных валков, включающий индукционный нагрев под закалку, охлаждение и отпуск валка [2].

Существенным недостатком данного способа являются высокая трудоемкость термической обработки валков, а также недостаточная глубина и твердость упрочненного слоя прокатного валка.

Известен также выбранный в качестве прототипа способ поверхностного упрочнения, включающий обработку поверхности сжатой сканирующей дугой прямого действия в аргоне при скорости перемещения 90-180 м/ч, силе тока дуги 200-300 А, с наложением упрочненных полос встык и перекрытием на 1/3-1/2 ширины [3].

Существенным недостатком данного способа является недостаточная глубина и повышенная хрупкость упрочненного слоя.

Желаемыми техническими результатами изобретения являются повышение качества упрочненного слоя, а также стойкости и работоспособности прокатных валков.

Для этого предлагается способ поверхностного упрочнения прокатных валков, включающий обработку поверхности сжатой сканирующей дугой прямого действия в аргоне, при этом упрочнение поверхности прокатных валков осуществляют пульсирующей дугой при силе тока 300-250 А, напряжении 18-30 В с наложением полос по винтовой линии при скорости перемещения дуги по поверхности 1,0-1,3 м/мин, с зазором между вольфрамовым электродом и упрочняемой поверхностью валка 10-12 мм, причем защиту электрода упрочняемой поверхности валка от окисления осуществляют аргоном при его расходе 600-700 л/час.

Заявляемые параметры подобраны экспериментальным путем исходя из следующих предпосылок, что при силе тока дуги менее 250 А не достаточно прогревается поверхность, в результате этого с поверхности валка образуется структура мартенсита недостаточной глубины, равной менее 300 мкм. При силе тока более 300 А с поверхности валка образуется слой с ярко выраженной текстурой кристаллизации. При напряжении, под которым находится неплавящийся электрод, менее 18 В недостаточно прогревается поверхность для выполнения процесса закалки. При более 30 В происходит оплавление обрабатываемой поверхности. При перемещении дуги по упрочняемой поверхности со скоростью менее 1,0 м/мин не обеспечивается требуемой глубины закаленный слой. При скорости перемещения более 1,3 м/мин возникает недогрев поверхности и в поверхностном слое не формируется закаленная структура. При зазоре между вольфрамовым электродом и обрабатываемой поверхностью менее 10 мм происходит оплавление обрабатываемой поверхности, а при зазоре более 12 мм недостаточно прогревается поверхность для выполнения процесса закалки. При расходе аргона менее 600 л/час происходит разрыв дуги, а при более 700 л/час дуга не возникает. Для обеспечения сплошного закаленного слоя используется перемещение дуги по поверхности по винтовой линии с наложением упрочненных участков.

Способ упрочнения поверхности прокатных валков с помощью электродуговой закалки поверхности валка пульсирующей дугой был реализован на экспериментальной установке (Фиг.1) и заключается в следующем.

Прокатный валок (1) устанавливали в патроне передней бабки (2) вальцетокарного станка (3). Устанавливали и крепили закалочную головку (4) на суппорте (5) вальцетокарного станка (3). Поперечным перемещением суппорта (5) устанавливали зазор между вольфрамовым электродом (6) закалочной головки (4) и обрабатываемой поверхностью калибра (7) прокатного валка (1). Между поверхностью валка (1) и вольфрамовым электродом (6), находящимся под напряжением, посредством искрового высокочастотного разряда возбуждали электрическую дугу обратной полярности. Для защиты вольфрамового электрода (6) и нагретой поверхностью валка (1) от окисления в дуговой промежуток подавали инертный газ аргон. Для рассредоточения тепловой дуги, регулирования формы и площади пятна нагрева на поверхности валка (1) использовали электромагнитное управление дугой. Регулирование термического цикла в поверхностном слое валка (1) осуществляли изменением напряжения и тока дуги, формы и скорости перемещения пятна нагрева по поверхности валка (1). Упрочнение поверхности осуществляли путем перемещения пятна нагрева по поверхности валка (1) с наложением упрочненных участков по винтовой линии.

Способ реализован в промышленных условиях для упрочнения валков чистовой клети рельсобалочного цеха на вальцетокарном станке модели 1К826. Между поверхностью валка и вольфрамовым электродом, находящимся под напряжением, посредством искрового высокочастотного разряда возбуждали электрическую дугу обратной полярности. Для защиты электрода и нагретого металла валка от окисления в дуговой промежуток подавали инертный газ аргон. Для рассредоточения тепловой мощности дуги, регулирования формы и площади пятна нагрева на поверхности валка использовали электромагнитное управление дугой. Регулирование термического цикла в поверхностном слое валка осуществляли изменением напряжения и тока дуги, формы и скорости перемещения пятна нагрева по поверхности валка. Упрочнение поверхности с заданной площадью осуществляли путем перемещения пятна нагрева по поверхности валка с наложением упрочненных участков по прямой или винтовой линии.

Заявляемый способ был использован при упрочнении валков чистовой клети рельсобалочного цеха для прокатки швеллера № 22У и № 40У.

Необходимый упрочненный слоя получали путем изменения силы тока дуги от 250 до 300 А, напряжения от 18 до 30 В, скорости перемещения дуги от 1 до 1,3 м/мин, а также регулирования зазора между электродом и упрочняющей поверхностью от 10 до 12 мм. При этом расход аргона изменяли от 600 до 700 л/ч.

Заявляемый способ упрочнения обеспечил на прокатных валках получение упрочненного слоя глубиной 460-500 мкм с твердостью 7500-8000 МПа. При этом стойкость валков на швеллере № 40У повысилась от 1500 т до 2500 т, на швеллере № 22У - от 500 т до 800 т. Снижение расхода валков на 2,5 кг/т.

Технологические параметры упрочняющей обработки приведены в таблице 1. Результаты исследования глубины и твердости упрочненного слоя приведены в таблице 2.

Таблица 1
№ п/пСила тока, АНапряжение, ВЗазор, мм Расход аргона, л/час Скорость перемещения, м/мин
1 250 1810 6001
2 26020 11650 1,2
3 280 2512 6901,25
4 30030 10700 1,3
прототип 200-300 -- -1,3-1,5

Таблица 2
№ п /пГлубина упрочненного слоя, мкм Микротвердость, МПа
1490 7800
2 460 7500
3 480 8000
4 500 8000
прототип 600-970 9000

Источники информации

1. Патент RU 2339469 С2.

2. Патент RU 2163644.

3. Поверхностное упрочнение чугуна с шаровидным графитом электрической дугой прямого действия. // Изв. вуз. Черная металлургия. 1994. № 10. С.48-49.

Класс C21D1/09 непосредственным действием электрической или волновой энергии; облучением частицами

стенд лазерной закалки опорной поверхности игл вращения высокоскоростных центрифуг -  патент 2527979 (10.09.2014)
способ упрочнения металлических изделий с получением наноструктурированных поверхностных слоев -  патент 2527511 (10.09.2014)
способ повышения физико-механических свойств инструментальных и конструкционных материалов методом объемного импульсного лазерного упрочнения (оилу) -  патент 2517632 (27.05.2014)
способ производства листовой электротехнической анизотропной стали и листовая электротехническая анизотропная сталь -  патент 2514559 (27.04.2014)
способ формирования износостойкого покрытия деталей -  патент 2510319 (27.03.2014)
лист электротехнической стали с ориентированной зеренной структурой -  патент 2509813 (20.03.2014)
текстурованный лист электротехнической стали и способ его получения -  патент 2509163 (10.03.2014)
способ улучшения магнитных свойств анизотропной электротехнической стали лазерной обработкой -  патент 2501866 (20.12.2013)
способ упрочнения изделий из твердых сплавов -  патент 2501865 (20.12.2013)
способ обработки изделий из высокоуглеродистых легированных сплавов -  патент 2494154 (27.09.2013)
Наверх