катализатор окисления

Классы МПК:B01J23/20 ванадий, ниобий или тантал
B01J23/28 молибден
B01J27/057 селен или теллур; их соединения
C07C5/333 каталитические способы
Автор(ы):, , , ,
Патентообладатель(и):Кустов Леонид Модестович (RU),
Кучеров Алексей Викторович (RU),
Кучерова Татьяна Николаевна (RU),
Финашина Елена Дмитриевна (RU),
Исаева Вера Ильинична (RU)
Приоритеты:
подача заявки:
2008-11-01
публикация патента:

Изобретение относится к оксидным катализаторам каталитических процессов окислительного дегидрирования углеводородов, в частности к гетерогенным катализаторам окисления. Катализатор окисления для процессов окислительного дегидрирования углеводородов на основе оксидов переходных металлов или их смесей, выбранных из группы, содержащей Мо, V, Те, Nb, эмпирической формулы Mo aVbTecNbd, где a, b, c, d грамм-атомные соотношения соответствующих элементов, представляющий собой геометрически структурированную твердую прокаленную структуру с емкостью решеточного кислорода не ниже 0.4 ммоль O2 /г и содержащего компоненты в следующих мольных отношениях: молибден (а) - >1.00-1.50; ванадий (b) - 0.20-2.00; теллур (с) - 0.20-1.50; ниобий (d) - 0.01-1.50. Технический результат - данный катализатор обеспечивает при окислительном дегидрировании углеводородов выход продукции не ниже 1000 г на килограмм катализатора при сохранении высокой конверсии (на уровне 30-50%) и селективности не ниже 95-97%. 1 табл.

Формула изобретения

Катализатор окисления для процессов окислительного дегидрирования углеводородов на основе оксидов переходных металлов или их смесей, выбранных из группы, содержащей Мо, V, Те, Nb, эмпирической формулы MoaVbTecNbd, где a, b, c, d - грамм-атомные соотношения соответствующих элементов, представляющий собой геометрически структурированную твердую прокаленную структуру с емкостью решеточного кислорода не ниже 0.4 ммоль O2/г и содержащего компоненты в следующих мольных отношениях:

молибден (а)>1.00-1.50
ванадий (b) 0.20-2.00
теллур (с) 0.20-1.50
ниобий (d)0.01-1.50

Описание изобретения к патенту

Изобретение относится к оксидным катализаторам каталитических процессов окислительного дегидрирования углеводородов, в частности к гетерогенным катализаторам окисления.

Эти катализаторы обычно являются сложными твердыми оксидами. Каталитическое окисление с их применением обычно проходит в два этапа. Сначала решеточный кислород оксида захватывается адсорбированной на поверхности оксида молекулой углеводорода. Углеводород при этом окисляется, а оксид регенерируется, взаимодействуя с кислородом воздуха, и возвращается в исходное состояние.

Применение катализаторов для управления химизмом процессов окислительного дегидрирования углеводородов имеет большое научное и практическое значение. В некоторых случаях окисление должно быть полным, например, при нейтрализации СО и углеводородных загрязнений в выхлопных газах автомобилей. Однако чаще необходимо, чтобы окисление было неполным, например, во многих широко применяемых в промышленности процессах превращения углеводородов в ценные промежуточные продукты, например, этана в этилен.

Известны алюмооксидные катализаторы с нанесенными оксидными системами магния и хрома; меди и хрома; меди, магния и хрома; оксида железа (RU пат. № 2332251, кл. B01D 53/86 (2006.01), опубл. 27.2008.08).

Описан катализатор получения синтез-газа, содержащий в качестве активных компонентов оксид кобальта, оксид марганца и оксид бария, в качестве носителя - жаростойкий армированный металлопористый носитель (RU пат. № 2320408, кл. B01J 23/84 (2006.01), опубл. 2008.03.27).

Каталитическое дегидрирование пропана проводят, используя в качестве катализаторов оксид алюминия или оксиды ванадия, вольфрама, хрома, кальция, нанесенные на оксид алюминия (RU пат. № 2280021, кл. С07С 5/46 (2006.01), опубл. 2006.07.20).

Описан катализатор для процесса дегидрирования углеводородов, содержащий в своем составе оксид хрома, щелочной металл, нанесенные на носитель. Носитель представляет собой композитный материал, включающий оксид алюминия и алюминий (RU пат. № 2256499, кл. B01J 23/26, опубл. 2005.07.20).

Заявлена каталитическая композиция для окисления этана до этилена и/или уксусной кислоты, и/или окисления этилена до уксусной кислоты, которая в сочетании с кислородом включает следующие элементы: молибден, ванадий, ниобий и золото в отсутствии палладия в соответствии с эмпирической формулой MоaWbAuc VdNbeYf (I), в которой Y обозначает один или несколько элементов, выбранных из группы, включающей Pt, Co, Rh, Ir, Cu, Ag, Fe, Ru, Os и Ni; где a, b, с, d, е и f указывают такие грамм-атомные соотношения элементов, при которых: 0<акатализатор окисления, патент № 2400298 b<1 и а+b=1, 10-5катализатор окисления, патент № 2400298 fкатализатор окисления, патент № 2400298 2 (RU пат. № 2238144, кл. B01J 23/68, опубл. 2004.10.20).

Уксусную кислоту получают газофазным окислением этана и/или этилена кислородом с использованием катализатора, который содержит элементы Mo, Pd, X и Y в комбинации с кислородом, формулы Moa PdbXcYd, где X и Y имеют следующие значения: X означает V и необязательно один или несколько элементов, выбранные из группы: Та, Те и W; Y означает Nb, Ca и Sb и необязательно один или несколько элементов, выбранные из группы: Bi, Cu, Ag, Au, Li, К, Rb, Cs, Mg, Sr, Ba, Zr, Hf; индексы a, b, с и d означают грамм-атомные соотношения соответствующих элементов, при этом а=1, b=0,0001-0,01, с=0,4-1 и d=0,005-1 (RU пат. № 2245322, кл. B01J 23/44, опубл. 2005.01.27).

Описан катализатор окисления этана до этилена с эмпирической формулой MoaPdbXcYd , в которой X обозначает один или несколько из Cr, Mn, Nb, Та, Ti, V, Те и W; Y обозначает один или несколько из В, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Co, Rh, Ir, Cu, Ag, Au, Fe, Ru, Os, K, Rb, Cs, Mg, Ca, Sr, Ba, Nb, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, Ti и U, а обозначает 1, b обозначает число от 0,0001 до 0,01, с обозначает число от 0,4 до 1, a d обозначает число от 0,005 до 1 (RU заявка № 2005126960, B01J 21/04 (2006.01), опубл. 2006.04.27).

Катализаторы окисления являются переносчиками кислорода и работают в циклическом режиме: после стадии получения целевого продукта восстановленный катализатор окисляют воздухом. Таким образом, для получения целевого продукта не требуется чистый кислород и повышается безопасность процесса окислительного дегидрирования углеводородов.

Активность катализаторов окисления в зависимости от их структуры и состава оксидов определяется емкостью катализатора по решеточному кислороду, его подвижностью и условиями проведения реакции окислительного дегидрирования. Установлено, что наибольшей подвижностью обладает решеточный кислород смешанных оксидов, в особенности у катализаторов на основе оксидов MoVNb. Катализаторы данных составов описаны в следующих патентах (US 4524236 (1985), JP - 10175885(1988), ЕР 0294845, WO-99/13980).

Недостатком применения катализаторов на основе оксидов MoVNb является низкая селективность выхода целевых продуктов (на уровне не более 75%) и неудовлетворяющая промышленному производству степень конверсии углеводородов (на уровне меньше чем 20%).

Наиболее близким по составу, из приведенных выше, прототипом настоящего изобретения является катализатор по патенту US 7319179 - В2, кл. B01J 23/00, опубл. 2008.01.15).

Задачей настоящего изобретения является разработка композиции гетерогенного катализатора окисления на основе оксидов или смешанных оксидов переходных металлов, выбранных из группы, содержащей Мо, V, Те, Nb, обеспечивающего при окислительном дегидрировании углеводородов выход продукции не ниже 1000 г на килограмм катализатора при сохранении высокой конверсии (на уровне 30-50%) и селективности не ниже 95-97%.

Для решения поставленной задачи предлагается катализатор окисления для процессов окислительного дегидрирования углеводородов на основе оксидов переходных металлов, выбранных из группы, содержащей Мо, V, Те, Nb, (эмпирической формулы MoaVbTec Nbd, где а-, b-, с-, d-), представляющего собой геометрически структурированную твердую прокаленную структуру с емкостью решеточного кислорода не ниже 0.4 ммоль О2/г и содержащего компоненты в следующих мольных отношениях:

молибден (а) - >1,00-1.50

ванадий (b) - 0.20-2,00

теллур (с) - 0.20-1.50

ниобий (d) - 0.01-1.50.

В отличие от прототипа предлагаемый в настоящем изобретении катализатор окисления не имеет в своем составе дополнительных металлов-промоторов и предназначен для проведения процесса окислительного дегидрирования углеводородов в периодическом режиме путем последовательной подачи в реактор в начале углеводорода, затем после кратковременного продувания реактора газом-носителем введением в реактор требуемого количества воздуха (кислорода).

Примеры приготовления катализатора предлагаемого состава.

Пример 1

6.4 г молибдотеллурата аммония [(NH4) 6TeMo6O242О] растворяют в 20 мл воды, к этому раствору приливают раствор 2.37 г ванадил сульфата в 10 мл воды. Образовавшуюся суспензию перемешивают в течение 5 минут. Затем к суспензии добавляют раствор 2.33 г оксалата ниобия (V) в 10 мл воды. Полученную смесь интенсивно перемешивают в течение 10 минут и переносят в автоклав с тефлоновым вкладышем. Воздух в автоклаве вытесняют инертным газом, автоклав герметизируют и нагревают до 175°С, выдерживают при этой температуре в течение 50 ч. Далее содержимое автоклава фильтруют, промывают дистиллированной водой и сушат при 90°С. Полученную активную фазу прокаливают при 600°С (2 часа) в токе инертного газа, скорость нагрева составляет 1.67°С в мин. Порошок далее прессуют и отсеивают нужную фракцию тонкой дисперсности. Рентгено-фазовым и спектральным анализом определены следующие соотношения элементов, входящих в состав катализатора эмпирической формулы MoaVbTecNbd

Молибден (а)>1,00
Ванадий (b) 0.29
Теллур (с)0.20
Ниобий (d) 0.15

Пример 2

2.559 г молибдата аммония (NH4)6Mo7 O242О растворяют в 20 мл воды, в этот раствор добавляют 2.394 г ТеО2. В полученную суспензию при перемешивании вносят раствор 3.260 г ванадил сульфата в 15 мл воды. Образовавшуюся суспензию перемешивают в течение 5 минут. Затем к суспензии добавляют раствор 3.987 г оксалата ниобия (V) в 20 мл воды.

Полученную смесь интенсивно перемешивают в течение 10 минут и переносят в автоклав с тефлоновым вкладышем. Воздух в автоклаве вытесняют инертным газом, автоклав герметизируют и нагревают до 175°С, выдерживают при этой температуре в течение 50 ч. Далее содержимое автоклава фильтруют, промывают дистиллированной водой и сушат при 90°С. Полученную активную фазу прокаливают при 600°С (2 часа) в токе инертного газа, скорость нагрева составляет 1.67°С в мин. Порошок далее прессуют и отсеивают нужную фракцию тонкой дисперсности. Рентгено-фазовым и спектральным анализом определены следующие грамм-атомные соотношения элементов, входящих в составе катализатора эмпирической формулы MoaVbTecNbd:

Молибден (а)1.50
Ванадий (b) 2,00
Теллур (с)1.50
Ниобий (d 1.50

Эффективность катализатора окисления по настоящему изобретения, как и в прототипе (US 7319179 - В2), определялась на примере его использования в процессе окислительного дегидрирования этана с получением этилена. Сравнительные показатели приведены в табл.1

Показатели производительности процесса в присутствии оксидного катализатора на основе оксидов Мо, V, Те, Nb
Номер примера п/п Температура реакции, °С Конверсия этана, % Селективность по этилену, % Производительность, г С2Н4/г(кат) ч
Прототип ЕР 1479438 (800 ч-1) 40049,1 69,60.1-0.2
Катализатор настоящего изобретения (10000 ч-1) 40065 981.0

Класс B01J23/20 ванадий, ниобий или тантал

способ переработки полупродуктов синтеза изопрена -  патент 2447049 (10.04.2012)
способ получения изопрена -  патент 2446138 (27.03.2012)
катализатор гидроочистки тяжелых нефтяных фракций и способ его приготовления -  патент 2414963 (27.03.2011)
способ приготовления активной фазы катализатора окислительного дегидрирования углеводородов, катализатор на ее основе, способ его получения и способ окислительного дегидрирования этана с его использованием -  патент 2358958 (20.06.2009)
смешанные металлоксидные катализаторы окисления и окислительного аммонолиза пропана и изобутана и способы их получения -  патент 2356627 (27.05.2009)
массы оксидов металлов -  патент 2352390 (20.04.2009)
каталитическая композиция для селективности превращения алканов в ненасыщенные карбоновые кислоты, способ получения композиции и способ применения композиции -  патент 2342991 (10.01.2009)
катализатор для получения серы по процессу клауса и способ его приготовления -  патент 2176156 (27.11.2001)
способ получения муравьиной кислоты -  патент 2049770 (10.12.1995)
способ получения смеси 2-метил-1-нафтола и 2,4-диметил-1- нафтола -  патент 2027694 (27.01.1995)

Класс B01J23/28 молибден

катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
каталитическая система и способ гидропереработки тяжелых масел -  патент 2525470 (20.08.2014)
способ активации молибден-цеолитного катализатора ароматизации метана -  патент 2525117 (10.08.2014)
цеолитсодержащий катализатор депарафинизации масляных фракций -  патент 2518468 (10.06.2014)
способ приготовления катализатора для получения ароматических углеводородов, катализатор, приготовленный по этому способу, и способ получения ароматических углеводородов с использованием полученного катализатора -  патент 2515511 (10.05.2014)
получение ароматических соединений из метана -  патент 2514915 (10.05.2014)
способ синтеза биоресурсных сложных эфиров акриловой кислоты -  патент 2514422 (27.04.2014)
катализатор гидроочистки масляных фракций и рафинатов селективной очистки и способ его приготовления -  патент 2497585 (10.11.2013)
способ изготовления каталитически активных геометрических формованных изделий -  патент 2495719 (20.10.2013)
способ изготовления каталитически активных геометрических формованных изделий -  патент 2495718 (20.10.2013)

Класс B01J27/057 селен или теллур; их соединения

улучшенный способ селективного удаления пропионовой кислоты из потоков (мет)акриловой кислоты -  патент 2491271 (27.08.2013)
катализатор для непрерывного окислительного дегидрирования этана и способ непрерывного окислительного дегидрирования этана с его использованием -  патент 2488440 (27.07.2013)
смешанные оксидные катализаторы для каталитического окисления в газовой фазе -  патент 2480280 (27.04.2013)
катализатор окисления оксида углерода -  патент 2456073 (20.07.2012)
способ окислительного аммонолиза пропана и изобутана в присутствии смешанных металлоксидных катализаторов -  патент 2451548 (27.05.2012)
молибденсодержащий катализатор, способ его получения и способ получения метилмеркаптана -  патент 2436626 (20.12.2011)
способ гетерогенного каталитического частичного прямого окисления пропана и/или изо-бутана -  патент 2354643 (10.05.2009)
катализатор окисления оксида углерода -  патент 2308322 (20.10.2007)
катализатор и способ получения винилацетата с его использованием -  патент 2225254 (10.03.2004)

Класс C07C5/333 каталитические способы

технологическая схема нового реактора дегидрирования пропана до пропилена -  патент 2523537 (20.07.2014)
катализатор на основе меди, нанесенный на мезопористый уголь, способ его получения и применения -  патент 2517108 (27.05.2014)
способ получения олефиновых углеводородов c3-c5 и катализатор для его осуществления -  патент 2514426 (27.04.2014)
способ получения дегидрированных углеводородных соединений -  патент 2508282 (27.02.2014)
способ определения устойчивости катализатора для дегидрирования алкилароматических углеводородов -  патент 2508163 (27.02.2014)
способ дегидрирования углеводородов -  патент 2505516 (27.01.2014)
катализатор для непрерывного окислительного дегидрирования этана и способ непрерывного окислительного дегидрирования этана с его использованием -  патент 2488440 (27.07.2013)
способ управления активностью катализатора процесса дегидрирования высших н-парафинов -  патент 2486168 (27.06.2013)
высокопористые пенокерамики как носители катализатора для дегидрирования алканов -  патент 2486007 (27.06.2013)
регенерация катализаторов дегидрирования алканов -  патент 2477265 (10.03.2013)
Наверх