способ обработки поверхности стекловолокнонаполненного политетрафторэтилена
Классы МПК: | C08J7/06 композициями, не содержащими высокомолекулярных веществ C09J183/06 содержащие кремний, связанный с кислородсодержащими группами |
Автор(ы): | Зуев Антон Владимирович (RU), Панова Лидия Григорьевна (RU), Пичхидзе Сергей Яковлевич (RU) |
Патентообладатель(и): | Открытое акционерное общество "Балаковорезинотехника" (RU) |
Приоритеты: |
подача заявки:
2008-08-27 публикация патента:
27.09.2010 |
Изобретение относится к способу обработки стекловолокнонаполненного политетрафторэтилена адгезивным составом для крепления резины во время вулканизации. Поверхность стекловолокнонаполненного политетрафторэтилена обрабатывают натрий-нафталиновым комплексом в тетрагидрофуране. Промывают. Сушат. Наносят 2-4 вес.% раствор 3-аминопропилтриэтоксисилана в этиловом спирте и сушат при температуре 70-90°С. Способ обеспечивает высокую прочность крепления акрилатных и фтористых резин к поверхности стекловолокнонаполненного политетрафторэтилена. 2 табл.
Формула изобретения
Способ обработки поверхности стекловолокнонаполненного политетрафторэтилена для крепления к нему резин на основе акрилатного или фтористого каучука, заключающийся в том, что стекловолокнонаполненный политетрафторэтилен подвергают обработке натрий-нафталиновым комплексом в тетрагидрофуране с последующей промывкой, сушкой, нанесением 2-4 вес.% раствора 3-аминопропилтриэтоксисилана в этиловом спирте и сушкой при температуре 70-90°С.
Описание изобретения к патенту
Изобретение относится к разработке адгезивного состава для крепления резины к стекловолокнонаполненному политетрафторэтилену (Ф4С25: фторопласт-4, содержащий 25 вес.% стекловолокна) во время вулканизации и может быть использовано в производстве резинотехнических изделий для автомобильной промышленности.
Политетрафторэтилен (ПТФЭ), вследствие особенностей своего химического и физического строения, обладает исключительной химической инертностью, широким диапазоном температур эксплуатации (от -269°С до +260°С), низким значением коэффициента трения, неудовлетворительной адгезионной способностью.
Для повышения адгезии ПТФЭ обычно используются приемы модифицирования его поверхности плазмой (Данилин Б.С. Применение низкотемпературной плазмы для травления и очистки материалов. - М.: Энергоатомиздат, 1987, 264 с. Трофименко К.А., Кучеева Е.А. Плазмохимическая модификация поверхности тефлона. XXX Гагаринские чтения. Тезисы докладов международной молодежной научной конференции, т.6, М.: ЛАТМЭС, 2004, с.23-24).
Известно использование карбофункциональных кремний-органических производных, в частности 3-аминопропилтриэтоксисилана (АГМ-9), для приготовления клеев и обработки поверхностей (Моцарев Г.В., Соболевский М.В., Розенберг В.Р. Карбофункциональные органосиланы и органосилоксаны. - Москва: Химия, 1990, с.124; Новицкая С.П., Нудельман З.Н., Донцов А.А. Фторэластомеры. Москва: Химия, 1988, с.180). Такие клеи могут содержать смолы (резольные, фенольные), 3-амино-пропилтриэтоксисилан (АГМ-9), растворитель (метилэтилкетон). Содержание воды в органическом растворителе - метилэтилкетоне (ТУ 6-09-782-76) лимитируется нормативным документом и не превышает 0,8 вес.%. Органический растворитель в таких клеях является основным, вода - второстепенным. При разбавлении метилэтилкетона водой в таком клее существенно падает адгезивная прочность резины к металлу.
Известны водные клеи фирмы Henkel XW 7484 и XW7856, представляющие собой водные дисперсии, коалесцирующие на поверхности разогретого металла в монолитную пленку (Морозов Ю.В., Резниченко С.В. Последние достижения в области химии и технологии эластомеров - Международная конференция по каучуку и резине IRC 98, Каучук и резина, № 1, 1999, с.46). Такие адгезивы сравнимы с системами, содержащими растворитель, хотя и несколько уступают им по прочности крепления резины к металлу. Однако отсутствуют данные, на основе каких эластомеров осуществляется крепление резин и о составах этих эластомеров (Байерсдорф Д. Крепление резин к металлу с помощью связующих систем "Хенкель". Каучук и резина, № 6, 1996, с.3 7).
Известны клеи и адгезивы для крепления изделий из резины на основе акрилатных каучуков к металлическим поверхностям во время вулканизации: Хемосилы 350 и 360 (сухой остаток 38-42 вес.% и 42-45 вес.%, соответственно) фирмы Henkel, водо-эмульсионный клей ВА-1 (ТУ 2294-330-12654617-95, сухой остаток не менее 12 вес.%).
В состав клеев Хемосил 350 и 360 (по аналогии с Хемосил 211) входят растворимые органические полимеры и диспергированные твердые вещества в органических растворителях (этаноле/этилацетате). Данный продукт входит в группу легковоспламеняемых веществ (Henkel KGaA, SPK 04/90).
Основными недостатками являются применение при их изготовлении различных растворителей и высокое содержание сухого остатка, представляющего собой набор различных растворимых полимеров, диспергированных твердых веществ.
В состав водоэмульсионного клея ВА-1 входит фенольная водорастворимая смола, полимеры (полибутадиен) и диспергированные твердые вещества. Конкретный состав не приводится.
Известно введение в состав резины модифицирующей добавки Р-152 (четвертичной аммонийной соли 1,8-диазобицикло[5,4,0]-ундецена-7 и новолачной смолы) для увеличения адгезии резин на основе фтор- и эпихлоргидринкаучуков (Нудельман З.Н. Фторкаучуки: основы, переработка, применение. М.: ООО ПИФ РИАС, 2007, 364 с.).
Известен также адгезивный состав (Гольфарб В.И., Ляпаева Н.А., Горбань В.И., Пичхидзе С.Я. Патент № 2180675. Адгезивный состав), представляющий собой водный адгезив для фтористых резин, пригодный для крепления акрилатных резин к металлической поверхности арматуры манжеты. Основным недостатком адгезива является необходимость при его использовании соблюдать гомогенность состава, который представляет собой набор различных растворимых полимеров и диспергированных твердых веществ.
Наиболее близким к заявляемому способу является химический способ обработки поверхности ПТФЭ (Ковачич Л. Склеивание металлов и пластмасс: пер. со словац. / Под ред. А.С.Фрейдина. - М.: Химия, 1985, 240 с.), который обеспечивает равномерность обработки и высокую адгезионную прочность (прототип). Сущность способа заключается в обработке ПТФЭ в течение 5-15 минут при 20°С раствором, приготовленным следующим образом: 128 г нафталина растворяют в 1 л тетрагидрофурана, добавляют 23 г металлического натрия и 2 часа перемешивают. Затем ПТФЭ промывают ацетоном, водой и сушат.
Техническим результатом изобретения является достижение высокой прочности крепления акрилатных и фтористых резин к поверхности стекловолокнонаполненного политетрафторэтилена.
Указанный технический результат достигается путем последовательной обработки поверхности стекловолокнонаполненного политетрафторэтилена натрий-нафталиновым комплексом в тетрагидрофуране и 3-аминопропилтриэтоксисиланом в этиловом спирте с последующей сушкой при температуре 70-90°С.
Пример. Адгезия стекловолокнонаполненного ПТФЭ к акрилатным и фтористым резинам.
В заявленном техническом решении используется химический метод модифицирования поверхности стекловолокнонаполненного ПТФЭ, заключающийся в последовательном погружении образца на 5 минут в натрий-нафталиновый комплекс в тетрагидрофуране с последующей промывкой, сушкой, нанесением 2-4 вес.% раствора 3-аминопропилтриэтоксисилана в этиловом спирте и сушкой при температуре 70-90°С.
Оптимальная концентрация 3-аминопропилтриэтоксисилана в этиловом спирте составляет 2-4 вес.%. Концентрации менее 2 вес.% и более 4 вес.%, как показали эксперименты, приводят к снижению прочности адгезии резин и стекловолокнонаполненного ПТФЭ.
Соединение резиновых смесей к модифицированным образцам Ф4С25 (фторопласт-4, содержащий 25 вес.% стекловолокна) производили в вулканизационном прессе.
Определение прочности адгезионного взаимодействия резин и стекловолокнонаполненного ПТФЭ проводилось по ГОСТ 6768-75.
При этом определялось усилие, необходимое для разделения слоев резины и Ф4С25. Испытывался образец шириной (25±0,5) мм, толщиной 4 мм и длиной, обеспечивающей расслоение на участке не менее 100 мм. Испытания проводили на разрывной машине Zwick/Roell со скоростью перемещения подвижного захвата 100 мм/мин.
Результаты исследования приведены в табл.1. Расшифровка составов резиновых смесей приведена в табл.2.
Таблица 1 | ||||
Прочность связи, кгс/см, при расслоении «резина-Ф4С25» | ||||
№ п/п | Резиновая смесь | Обработка ПТФЭ | ||
натрий-нафталиновый комплекс (прототип) | натрий-нафталиновый комплекс, затем АГМ-9 | АГМ-9, затем натрий-нафталиновый комплекс | ||
1 | 2803-9 на основе акрилатного каучука Акрон XF-5140 (продукт эмульсионной сополимеризации акриловой кислоты с виниловыми мономерами, вязкость по Муни ML (1+4) 100°С=40 ед.) | 1,59 | 1,89 | 0,64 |
2 | 2803-23 на основе акрилатного каучука Акрон XF-5140 | 0,55 | 0,84 | 0,40 |
3 | 420-35 на основе фтористых каучуков СКФ-26 (сополимер винилиденфторида и гексафторпропилена, высший сорт. Вязкость по Муни ML (1+10) 150°С=95-105 ед.) и СКФ-26 OHM (сополимер винилиденфторида и гексафторпропилена, OHM - очень низкомолекулярный. Вязкость по Муни ML (1+4)120°С=20 ед.) | 0,51 | 0,82 | 0,47 |
4 | 420-67 на основе фтористого каучука G-752 (сополимер винилиденфторида и гексафторпропилена, с вулканизующей системой, состоящей из Бисфенола AF и фосфониевой соли хлорида. Вязкость по Муни ML (1+10)121°С=30 ед.) | 1,60 | 2,01 | 1,44 |
Анализ результатов показал, что прочность связи «резина-Ф4С25» после химической обработки Ф4С25 раствором натрий-нафталинового комплекса в тетрагидрофуране с последующим нанесением АГМ-9 в этиловом спирте в 1,18-1,60 раза превышает значение прочности связи при обработке поверхности Ф4С25 только раствором натрий-нафталинового комплекса в тетрагидрофуране. АГМ-9, как бифункциональное соединение, обеспечивает химическое взаимодействие между матрицей резины (каучуком) и поверхностью Ф4С25, чем достигается повышение прочности связи «резина-Ф4С25». Причем этот факт отмечен для всех исследованных резиновых смесей, приведенных в табл.2.
Обработка же АГМ-9, затем химическая модификация отрицательно сказывается на прочности связи «резина-Ф4С25». Цвет поверхности Ф4С25 изменяется до светло-коричневого. Это связано с тем, что присутствие АГМ-9 на поверхности Ф4С25 препятствует более полному дефторированию полимера и, соответственно, приобретению темно-коричневого цвета.
При обработке поверхности Ф4С25 раствором натрий-нафталинового комплекса происходит дефторирование полимерной цепи и образование двойных связей в макромолекуле ПТФЭ, что подтверждается появлением в ИК-спектре полос поглощения ( s=1592,0 см-1, as=1417,7 см-1), соответствующих колебаниям связи С=С, отсутствующих у немодифицированного Ф4С25. По кратным связям может осуществляться взаимодействие стекловолокнонаполненного ПТФЭ с аминогруппой карбамата гексаметилендиамина, входящего в состав акрилатной резины, а аминогруппа 3-аминопропилтриэтоксисилана может взаимодействовать с кислородом карбонильной и эфирных групп акрилата.
Не исключено, что остаточные этокси-группы АГМ-9 в процессе вулканизации при высокой температуре и давлении продолжают связываться с компонентами резины, а именно с Si-OH группами минеральных наполнителей (белая сажа БС-100, диатомитовая земля Celite-219 и др.) акрилатной резины.
Таким образом, прочность связи стекловолокнонаполненного ПТФЭ с резиной на основе фтористых и акрилатных каучуков может быть повышена дополнительной модификацией поверхности фторопластового композита Ф4С25 3-аминопропилтриэтоксисиланом в этиловом спирте, предварительно обработанного раствором натрий-нафталинового комплекса в тетрагидрофуране.
При этом расход составов на первой и второй стадиях обработки поверхности Ф4С25 составляет 2900±50 и 300±10 мл/м2, соответственно.
Таблица 2 | |||||
Исследованные составы акрилатных и фтористых резин | |||||
№ п/п | Состав | Шифр резины | |||
2803-9 (на 100 массовых частей каучука) | 2803-23 (на 100 массовых частей каучука) | 420-35 (на 100 массовых частей каучука) | 420-67 (на 100 массовых частей каучука) | ||
1 | Каучук Акрон XF-5140 | 100 | 100 | ||
2 | Диафен ФП | 2 | |||
3 | Стеариновая кислота Т-32 | 1 | |||
4 | Силикагель Carplex 1120 | 50 | 7,6 | ||
5 | Белая сажа БС-100 | 50 | |||
6 | Диатомитовая земля Celite 219 | 35 | 25 | ||
7 | Волластонит FW 325 | 50 | 40 | 8 | |
8 | Графит Superrior 5026 | 2 | 0,3 | 1 | |
9 | АГМ-9 | 0,4 | 0,4 | ||
10 | Техуглерод Т-900/Окись железа | -/2 | 3/3 | -/0,2 | 2/2 |
11 | Тетрастеарат пентаэритрита/Воск ЗВ-П | -/1 | 2/1 | -/0,2 | -/0,3 |
12 | Дибутилсебацинат/Низкомолекулярный полиэтилен/Амины таловые | 2/-/- | 1,5/2/1,2 | ||
13 | Дифенилгуанидин | 1 | 1 | ||
14 | Гексаметилендиаминкарбамат | 0,7 | 0,7 | ||
15 | Каучук СКФ-26/СКФ-26 OHM/G-752 | 66/34/- | -/-/100 | ||
16 | Окись магния RA-200/магнезия жженая | -/8 | 3/- | ||
17 | Гидроокись кальция Caldic 2000 | 6 | 6 | ||
18 | Сульфат бария | 15 | 35 | ||
19 | Фторид кальция | 7 | 35 | ||
20 | Лак рубиновый | 0,2 | |||
21 | Бисфенол А (дифенилолпропан) | 1,6 | |||
22 | Октаэтилтетраамидофосфонийбромид | 0,3 | |||
Сумма | 240,1 | 240,7 | 151,5 | 184,3 | |
Вязкость, ML (1+4)120°С, ед. Муни | 60 | 60 | 103,5 | 89 |
Класс C08J7/06 композициями, не содержащими высокомолекулярных веществ
Класс C09J183/06 содержащие кремний, связанный с кислородсодержащими группами