генератор питания забойной телеметрической системы

Классы МПК:H02K7/18 конструктивное сопряжение электрического генератора с механическим приводным двигателем, например с турбиной
H02K35/02 с подвижным магнитом и неподвижной системой катушек 
E21B47/00 Исследование буровых скважин
Патентообладатель(и):Болотин Николай Борисович (RU)
Приоритеты:
подача заявки:
2010-02-01
публикация патента:

Изобретение относится к электрическим машинам, а именно для генератора питания скважинной аппаратуры. Упрощение конструкции, увеличение надежности и мощности генератора при уменьшении диаметральных габаритов и веса электрогенератора является техническим результатом изобретения. Генератор питания телеметрической системы, содержит устройство преобразования механической энергии в электрическую, для чего между ротором и устройством преобразования механической энергии в электрическую установлена магнитная муфта, содержащая ведущую и ведомую полумуфты, а устройство преобразования механической энергии в электрическую выполнено в виде электростатического генератора, соединенного валом с ведомой полумуфтой. Электростатический генератор выполнен в виде группы дисков из диэлектрического материала, установленных на валу между металлическими дисками, на которых с обеих сторон выполнены токосъемные щетки. Электростатический генератор установлен в стакане из электроизоляционного материала, который установлен внутри защитного корпуса. Магнитная муфта выполнена торцевой и цилиндрической, полумуфта соединена с ротором, а ведомая - с валом. Внутренняя полость ведущей муфты заполнена смазывающей жидкостью через отверстие. 3 з.п. ф-лы, 1 ил. генератор питания забойной телеметрической системы, патент № 2400906

генератор питания забойной телеметрической системы, патент № 2400906

Формула изобретения

1. Генератор питания телеметрической системы, содержащий защитный корпус, электрический разъем, по меньшей мере, один узел крепления с отверстиями для прохода бурового раствора, ротор с гидротурбиной и устройство преобразования механической энергии в электрическую, отличающийся тем, что между ротором и устройством преобразования механической энергии в электрическую установлена магнитная муфта, выполненная в виде ведомой, соединенной с валом, и ведущей, соединенной с ротором полумуфт с герметичной перегородкой между ними, содержащей части из магнитопроницаемого материала, а в качестве устройства преобразования механической энергии в электрическую на валу ведомой полумуфты установлен электростатического генератора в виде группы дисков из диэлектрического материала между металлическими дисками, на которых с обеих сторон выполнены токосъемные щетки и которые размещены в стакане из электроизоляционного материала внутри защитного корпуса, при этом внутренняя полость ведущей полумуфты заполнена смазывающей жидкостью, а в верхней части защитного корпуса установлен, по меньшей мере, один компенсатор давления и температурного расширения, сообщающийся с полостью ведущей полумуфты.

2. Генератор по п.1, отличающийся тем, что магнитная муфта выполнена торцевой.

3. Генератор по п.1, отличающийся тем, что магнитная муфта выполнена цилиндрической.

4. Генератор по любому из пп.1-3, отличающийся тем, что отверстие для заправки смазывающей жидкости полости ведущей полумуфты выполнено сверху.

Описание изобретения к патенту

Изобретение относится к электрическим машинам. Конкретно изобретение предназначено для генератора питания скважинной аппаратуры и передающего устройства забойной телеметрической системы. Генератор преобразует энергию промывочной жидкости в электрическую, необходимую для питания скважинных навигационных и геофизических приборов в процессе бурения и передатчика электромагнитного канала связи. Для работы телеметрической системы на большой глубине требуется увеличение мощности передающего устройства до 1 кВт и более. Получить большую мощность при малых габаритах генератора весьма проблематично

Известен автономный турбинный агрегат (электрогенератор), также предназначенный для питания электрической энергией телеметрической системы, содержащий гидротурбину, приводимую в движение потоком промывочной жидкости, маслозаполненный статор, залитый эпоксидным компаундом, и ротор генератора переменного тока на постоянных магнитах, расположенный на одном валу с гидротурбиной. (Молчанов А.А., Сираев А.X. Скважинные автономные системы с магнитной регистрацией, М., Недра, 1979, с.102-103).

Этот генератор состоит из статора, размещенного внутри агрегата и шестиполюсного кольцевого магнитного ротора, выполненного снаружи. Ротор одновременно является корпусом для рабочих лопаток трехступенчатой гидротурбины. Перед каждой ступенью рабочих лопаток гидротурбины, в свою очередь, установлены три ступени направляющих аппаратов, собранных на внешнем корпусе, что увеличивает диаметр устройства. Для предотвращения попадания промывочной жидкости в электрогенератор и подшипниковые узлы установлены уплотняющие устройства, внутренняя полость электрогенератора заполнена трансформаторным маслом.

Ввиду того, что электрогенератор работает в интервале температур от -40 до +130°С, при глубинах бурения до 3500 м и более, а объем масла изменяется при изменении температуры, введен компенсатор давления и температурного расширения смазывающей жидкости (масла). Компенсатор давления и температурного расширения смазывающей жидкости выполнен внутри входного обтекателя генератора. Он состоит из двух тонких профильных пластин, одна из которых выпуклая, а другая вогнутая. Компенсатор давления и температурного расширения смазывающей жидкости предназначен для компенсации изменения объема масла в маслозаполненной полости генератора в рабочих условиях при повышении температуры, а также выравнивания давления внутри и снаружи генератора.

Недостатками этого генератора являются: низкая надежность, малый ресурс, большие габариты и масса устройства, сложность конструкции.

Эти недостатки обусловлены в первую очередь тем, что в качестве привода используется многоступенчатая турбина с направляющими аппаратами. Использование гидротурбины с направляющими аппаратами в качестве привода предъявляет повышенные требования к качеству очистки промывочной жидкости от фракций выбуренной породы и посторонних предметов, попадание которых в зазор между рабочими и направляющими лопатками гидротурбины может привести к ее остановке (заклиниванию). Наличие направляющих аппаратов гидротурбины увеличивает диаметральный габарит электрогенератора, что нежелательно при бурении скважин относительно малого диаметра.

Второй конструктивный недостаток - это сложность и ненадежность компенсатора давления и температурного расширения смазывающей жидкости. Из-за упругости стенок компенсатора давление смазывающей жидкости всегда меньше давления окружающей среды. Это может привести к попаданию промывочной жидкости в систему смазки электрогенератора и к износу подшипников, уплотнений и других деталей.

Известен электрогенератор по патенту РФ № 2331149, прототип. Этот электрогенератор содержит защитный корпус, по меньшей мере, один узел крепления, ротор с гидротурбиной и устройство преобразования механической энергии в электрическую,

Недостатки электрогенератора - ненадежность и сложность конструкции, обусловленные низкой надежностью обмоток возбуждения, недостаточная мощность электрогенератора при его ограниченных диаметральных габаритах.

Задачи его создания - упрощение конструкции, повышение мощности при уменьшении диаметральных габаритов и веса электрогенератора.

Решение указанной задачи достигнуто благодаря тому, что в генераторе питания телеметрической системы, содержащем защитный корпус, электрический разъем, по меньшей мере, один узел крепления, ротор с гидротурбиной и устройство преобразования механической энергии в электрическую, между ротором и устройством преобразования механической энергии в электрическую установлена магнитная муфта, содержащая ведущую и ведомую полумуфты, а устройство преобразования механической энергии в электрическую выполнено в виде электростатического генератора, соединенного валом с ведомой полумуфтой. Электростатический генератор выполнен в виде группы дисков из диэлектрического материала, установленных на валу между металлическими дисками, на которых с обеих сторон выполнены токосъемные щетки. Электростатический генератор установлен в стакане из электроизоляционного материала, который установлен внутри защитного корпуса. Магнитная муфта выполнена торцовой. Магнитная муфта выполнена цилиндрической.

Между ведомой и ведущей полумуфтами выполнена и герметичная перегородка, содержащая части из магнитопроницаемого материала, при этом ведущая полумуфта соединена с ротором, а ведомая - с валом. Внутренняя полость ведущей муфты заполнена смазывающей жидкостью. Отверстие для заправки смазывающей жидкости полости ведущей полумуфты выполнено сверху. Генератор содержит, по меньшей мере, один компенсатор давления и температурного расширения, сообщающийся с полостью ведущей полумуфты.

Сущность изобретения поясняется на чертеже.

Электрогенератор питания скважинной аппаратуры установлен в колонне бурильных труб или в обсадной колонне (не показано) и содержит защитный корпус 1 и, по меньшей мере, одно устройство крепления 2. В устройстве крепления 2 электрогенератора выполнены отверстия 3 для прохода бурового раствора.

Электрогенератор содержит ротор 4 с гидротурбиной 5. Гидротурбина 5 имеет наклонно установленные плоские лопатки, под углом 20генератор питания забойной телеметрической системы, патент № 2400906 60°.

Защитный корпус 1 имеет в нижней части электрический разъем 6, к которому подсоединены провода 7 от устройства предобразования механической энергии в электрическую 8. Между ротором 4 и устройством преобразования механической энергии в электрическую 8 установлена магнитная муфта 9.

Магнитная муфта 9 содержит ведущую и ведомую полумуфты 10 и 11 с постоянными магнитами 12 и герметичной перегородкой 13 между ними, имеющей магнитопроницаемые части 14. При этом возможны два варианта исполнения магнитной муфты 9: торцовая муфта и цилиндрическая муфта.

Устройство преобразования механической энергии в электрическую 8 содержит электростатический генератор, соединенный через вал 16 с ведомой полумуфтой 11.

Электростатический генератор 15 выполнен в виде группы дисков из диэлектрического материала 17, установленных на валу 16 между металлическими дисками 18, на которых с обеих сторон выполнены токосъемные щетки 19. Электростатический генератор 15 установлен в стакане 20 из электроизоляционного материала, который установлен внутри защитного корпуса 1. Вал 16 установлен на подшипниках 20 и 21. Подшипники 20 и 21 уплотнены соответственно уплотнениями 22 и 23 или выполнены закрытыми.

Полость 24 ведущей полумуфты 10 изолирована от полости 25 ведомой полумуфты 11 герметичной перегородкой 13. Полость 26 устройства преобразования механической энергии в электрическую 8 загерметизирована уплотнением 22, выполненным в перегородке 27. Полости 25 и 26 выполнены герметичными и заполнены инертным газом.

Для заполнения смазывающей жидкостью полости 24 ведущей полумуфты 10 предусмотрено осевое отверстие 28, выполненное в роторе 4 и заглушенное винтом 29.

Ротор 4 установлен на подшипнике 30, который защищен уплотнением (уплотнениями) 31.

Для компенсации расхода смазывающей жидкости, температурных расширений и переменного давления в скважине предусмотрен, по меньшей мере, один компенсатор давления и температурного расширения 32, выполненный в передней части корпуса 1 электрогенератора. Наиболее целесообразно выполнить 2генератор питания забойной телеметрической системы, патент № 2400906 8 компенсаторов давления и температурного расширения 32 и разместить внутри защитного корпуса 1 со стороны гидротурбины 5, так как в компенсации нуждается только полость 24, а полости 25 и 26 выполнены герметичными, могут быть заполнены инертным газом и не нуждаются в компенсации при условии выполнения стенок защитного корпуса достаточной толщины.

Каждый компенсатор давления и температурного расширения 32 содержит компенсационный поршень 33, установленный и уплотненный относительно защитного корпуса 1. Полость 34 под компенсационным поршнем 33 отверстием (отверстиями) 41 соединена с полостью 24 ведущей полумуфты 10, а полость 36 над компенсационным поршнем 33 соединена отверстием (отверстиями) 37 с окружающей средой для компенсации изменения давления и температурного расширения смазывающей жидкости. Компенсационный поршень 33 подпружинен пружиной 38 в сторону ведущей полумуфты 10 для создания избыточного давления в полости 24.

При работе генератора буровой раствор проходит через гидротурбину 5, которая начинают вращаться с ротором 4 и ведущей полумуфтой 10. Магнитный поток проходит через магнитопроводящие части 14 и приводит во вращение ведомую полумуфту 11. Ведомая полумуфта 11 приводит во вращение вал 16, который приводит во вращение пакет дисков из диэлектрического материала 17. Токосъемники 19 снимают статическое электричество с этих дисков и через металлические диски 18 и провода 7 передают электроэнергию на электрический разъем 6.

При изменении объема смазывающей жидкости в полости 24 по любой причине осуществляется соответствующее перемещение компенсационного поршня 33. Вследствие этого внутри полости 24 всегда поддерживается давление на 2генератор питания забойной телеметрической системы, патент № 2400906 4 атм больше, чем давление окружающей среды. Это препятствует проникновению абразивных частиц, содержащихся в буровом растворе, внутрь полости 24. Если применено несколько компенсаторов давления и температурного расширения 32, то при засорении одного из отверстий 37 (или нескольких отверстий 37, если применено 4генератор питания забойной телеметрической системы, патент № 2400906 8 компенсаторов давления и температурного расширения 32), остальные компенсаторы давления и температурного расширения 32 будут выполнять свою функцию, даже при работе одного из них. Это значительно повышает надежность генератора и его ресурс. Применение изобретения позволило достичь следующего.

1. Упростить конструкцию генератора, за счет отказа от применения обмоток возбуждения и постоянных магнитов.

2. Увеличить мощность и напряжение на электрических выводах генератора за счет применения электростатического генератора, способного создавать высокое напряжение.

3. Значительно увеличить ресурс работы подшипника за счет уменьшения диаметра ротора до минимально-возможного.

4. Уменьшить дисбаланс ротора генератора за счет уменьшения его диаметра и длины. На роторе закреплены только гидротурбина и ведомая полумуфта.

5. Повысить надежность электрогенератора за счет полной герметизации его основных полостей: полости ведомой полумуфты и электростатического генератора и за счет выполнения уплотнения полости ведущей полумуфты по относительно небольшому диаметру ротора.

6. Улучшить ремонтопригодность генератора.

Класс H02K7/18 конструктивное сопряжение электрического генератора с механическим приводным двигателем, например с турбиной

генераторная установка -  патент 2524577 (27.07.2014)
аксиальная индукторная электрическая машина с электромагнитным возбуждением -  патент 2520610 (27.06.2014)
электромагнитное устройство, выполненное с вожможностью обратимой работы в качестве генератора и электродвигателя -  патент 2516373 (20.05.2014)
модульное электромагнитное устройство, выполненное с возможностью обратимой работы в качестве генератора и электродвигателя -  патент 2510559 (27.03.2014)
способ получения электроэнергии для электропитания устройств автоматики трубопроводов -  патент 2506686 (10.02.2014)
кольцевой генератор -  патент 2506682 (10.02.2014)
скважинный электрогенератор -  патент 2473161 (20.01.2013)
блок энергетический для электромобилей -  патент 2462373 (27.09.2012)
линейный генератор -  патент 2453970 (20.06.2012)
скважинный генератор -  патент 2442892 (20.02.2012)

Класс H02K35/02 с подвижным магнитом и неподвижной системой катушек 

Класс E21B47/00 Исследование буровых скважин

способы и системы для скважинной телеметрии -  патент 2529595 (27.09.2014)
способ передачи информации из скважины по электрическому каналу связи и устройство для его осуществления -  патент 2528771 (20.09.2014)
способ исследования скважины -  патент 2528307 (10.09.2014)
наложение форм акустических сигналов с использованием группирования по азимутальным углам и/или отклонениям каротажного зонда -  патент 2528279 (10.09.2014)
гироинерциальный модуль гироскопического инклинометра -  патент 2528105 (10.09.2014)
устройство и способ доставки геофизических приборов в горизонтальные скважины -  патент 2527971 (10.09.2014)
способ наземного приема-передачи информации в процессе бурения и устройство для его реализации -  патент 2527962 (10.09.2014)
способ исследования скважины -  патент 2527960 (10.09.2014)
способ газодинамического исследования скважины -  патент 2527525 (10.09.2014)
способ гидродинамических исследований газонасыщенных пластов без выпуска газа на поверхность -  патент 2527089 (27.08.2014)
Наверх