способ разработки неоднородного нефтяного пласта
Классы МПК: | E21B43/22 с применением химикалий или бактерий |
Автор(ы): | Волков Владимир Анатольевич (RU), Беликова Валентина Георгиевна (RU), Турапин Алексей Николаевич (RU), Шкандратов Виктор Владимирович (RU), Чертенков Михаил Васильевич (RU), Фомин Денис Григорьевич (RU) |
Патентообладатель(и): | Общество с ограниченной ответственностью "Дельта-пром" (RU) |
Приоритеты: |
подача заявки:
2008-10-30 публикация патента:
20.10.2010 |
Изобретение относится к нефтедобывающей промышленности, в частности к способам разработки неоднородного пласта нефтяных месторождений, также может быть использовано для изоляции водопритока в нефтяные скважины, для увеличения нефтеотдачи и снижения обводненности продукции скважин и для регулирования профиля приемистости нагнетательных скважин. Способ разработки неоднородного нефтяного пласта включает закачку в пласт первой оторочки - дисперсии компонентов, второй оторочки - водного раствора полимера и соли поливалентного металла, причем в качестве дисперсии компонентов используют дисперсию высокодисперсного гидрофобного материала - ВДГМ в количестве 0,1-3,0 мас.% в среде, по меньшей мере, одного кремнийсодержащего вещества, а указанный водный раствор полимера подкислен до рН 1-3 и дополнительно содержит, по меньшей мере, одно поверхностно-активное вещество - ПАВ, при следующем соотношении компонентов, мас.%: полимер 0,01-5,0, по меньшей мере, одно ПАВ 0,1-3,0, соль поливалентного металла 0,01-0,3, вода - остальное. Технический результат - повышение эффективности способа обработки пласта за счет улучшения реологических и гидрофобизирующих свойств закачиваемых композиций, увеличения их нефтевытесняющих свойств. Изобретение развито в зависимых пунктах формулы. 3 з.п. ф-лы, 6 табл.
Формула изобретения
1. Способ разработки неоднородного нефтяного пласта, включающий закачку в пласт первой оторочки - дисперсии компонентов, второй оторочки - водного раствора полимера и соли поливалентного металла, отличающийся тем, что в качестве дисперсии компонентов используют дисперсию высокодисперсного гидрофобного материала - ВДГМ в количестве 0,1-3,0 мас.% в среде, по меньшей мере, одного кремнийсодержащего вещества, а указанный водный раствор полимера подкислен до рН 1-3 и дополнительно содержит, по меньшей мере, одно поверхностно-активное вещество - ПАВ, при следующем соотношении компонентов, мас.%:
полимер | 0,01-5,0 |
по меньшей мере, одно ПАВ | 0,1-3,0 |
соль поливалентного металла | 0,01-0,3 |
вода | остальное |
2. Способ по п.1, отличающийся тем, что при закачке в пласт с недостатком воды указанную дисперсию ВДГМ предварительно разбавляют разбавителем, в качестве которого для маслорастворимого кремнийорганического вещества, содержащего хлор, используют минерализованную пластовую воду хлоркальциевого типа, а для маслорастворимого кремнийорганического вещества, не содержащего в своем составе хлора, используют 0,5-4,0 мас.% раствор соляной кислоты на минерализованной пластовой воде хлоркальциевого типа, при соотношении: на 1 об.ч. указанной дисперсии 0,5-2 об.ч. разбавителя.
3. Способ по п.1, отличающийся тем, что указанная дисперсия дополнительно содержит 0,1-5,0 мас.% водопоглощающего полимера и/или 0,1-3,0 мас.%, по меньшей мере, одного ПАВ.
4. Способ по п.1, отличающийся тем, что дополнительно осуществляют закачку третьей оторочки, содержащей, по меньшей мере, одно кремнийсодержащее вещество.
Описание изобретения к патенту
Изобретение относится к нефтедобывающей промышленности, в частности к способам разработки пласта нефтяных месторождений, а также может быть использовано для изоляции водопритока в нефтяные скважины, для увеличения нефтеотдачи и снижения обводненности продукции скважин и для регулирования профиля приемистости нагнетательных скважин.
Известен способ обработки пласта, включающий закачку кремнийсодержащего вещества и высокодисперсного гидрофобного материала ВДГМ (патент № 2249670, опубл. 10.04.2005 г. Бюл. № 10).
Известен способ обработки пласта, включающий закачку водного раствора анионного полимера и соли поливалентного металла в кислой среде (СССР А.С. № 1645472, Е21В 43/22, опубл. 30.04.91, Бюл. № 16).
Наиболее близким к предлагаемому способу является способ разработки неоднородного нефтяного пласта, по которому в пласт закачивают водный раствор полимера и соли поливалентного металла с применением дисперсии гель-частиц (патент № 2299319, опубл. 20.05.2007 г. Бюл. № 14).
Ввиду гидрофильной природы закачиваемые композиции по известному способу разработки слабо изменяют смачиваемость породы пласта и имеют низкие нефтевытесняющие свойства. Способ имеет узкую область применения.
Целью предлагаемого изобретения является создание более эффективного и имеющего широкую область применения способа разработки неоднородного нефтяного пласта, включающего закачку в пласт поверхностно-активной композиции с применением дисперсии высокодисперсного гидрофобного материала, ПАВ и других компонентов в среде кремнийсодержащего вещества, представляющего широкий спектр кремнийсодержащих веществ: кремнийорганических или кремнийнеорганических для создания повышенных фильтрационных сопротивлений в пористой среде, и увеличения нефтевытесняющей способности закачиваемых композиций за счет изменения смачиваемости породы, а именно, увеличения гидрофобизации поверхности породы пласта с целью подключения к разработке застойных и слабодренируемых зон пласта.
Поставленная задача решается тем, что
1. Способ разработки неоднородного нефтяного пласта, включающий закачку в пласт первой оторочки - дисперсии компонентов, второй оторочки - водного раствора полимера и соли поливалентного катиона, отличающийся тем, что в качестве дисперсии компонентов используют дисперсию высокодисперсного гидрофобного материала ВДГМ в количестве 0,1-3,0 мас.% в среде, по меньшей мере, одного кремнийсодержащего вещества, а указанный водный раствор полимера подкислен до рН 1-3 и дополнительно содержит, по меньшей мере, одно поверхностно-активное вещество - ПАВ, при следующем соотношении компонентов, мас.%:
полимер | 0,01-5,0 |
по меньшей мере, одно ПАВ | 0,1-3,0 |
соль поливалентного металла | 0,01-0,3 |
вода | остальное |
2. Способ по п.1, отличающийся тем, что при закачке в пласт с недостатком воды указанную дисперсию ВДГМ предварительно разбавляют разбавителем, в качестве которого для маслорастворимого кремнийорганического вещества, содержащего хлор, используют минерализованную пластовую воду хлоркальциевого типа, а для маслорастворимого кремнийорганического вещества, не содержащего в своем составе хлора, используют 0,5-4,0 мас.% раствор соляной кислоты на минерализованной пластовой воде хлоркальциевого типа, при соотношении: на 1 об. ч. указанной дисперсии 0,5 - 2 об. части разбавителя.
3. Способ по п.1, отличающийся тем, что указанная дисперсия дополнительно содержит 0,1-5,0 мас.% водопоглощающего полимера и/или 0,1-3,0 мас.%, по меньшей мере, одного ПАВ.
4. Способ по п.1, отличающийся тем, что дополнительно осуществляют закачку третьей оторочки, содержащей, по меньшей мере, одно кремнийсодержащее вещество.
В качестве кремнийсодержащего вещества используют маслорастворимые или водорастворимые кремнийорганические вещества, или водорастворимые или коллоидные кремнийнеорганические вещества.
В качестве маслорастворимого кремнийорганического вещества, используют органохлорсиланы, смесь тетраэтоксилана и органохлорсиланов, смесь тетраэтоксилана и этоксиорганохлорсилоксанов, например, олигоорганоэтоксихлорсилоксаны под названием «продукт 119-204» (ТУ 6 02-1294-84), этилсиликат-40 (ЭТС-40, ГОСТ 26371-84) - гомогенную смесь олигоэтоксисилоксанов; или сложную смесь тетраэтоксилана и олигоэтоксисилоксанов - этилсиликат - 32 (ЭТС-32, ТУ 6-02-895-86); или кремнийорганическую эмульсию КЭ 20-03 (ТУ 6-0505763441-96-93) - 70%-ную водную эмульсию полиэтилсилоксановой жидкости ПЭС-5, или полимерный тампонажный материал марки АКОР Б 100, модифицированный четыреххлористым титаном (ТУ 39-1331-88), или новые марки материалов группы АКОР: АКОР БН 100-104, АКОР БН 300, выпускаемые НПФ «Нитпо», или кремнийорганические смолы 139-297 - растворы полифенилсилоксановой смолы в ортоксилоле (ТУ 6-02-1-026-90) или полиметилфенилсилоксановой смолы 134-276 в углеводородном растворителе (ТУ 6 02-1360-87), в качестве водорастворимого кремнийорганического вещества используют, например, гидрофобизирующую кремнийорганическую жидкость ГКЖ-11Н ТУ 6-000491277-101-97) - водный раствор метилсиликоната натрия или композицию этоксисилоксанов (ТУ 6-00 - 05763441-45-92) под названием «продукт 119-296 Т».
В качестве кремнийнеорганического вещества используют технические водорастворимые или коллоидные силикаты, включающие силикаты натрия в виде жидкого стекла или полисиликаты с силикатным модулем 3,0-6,5, или метасиликаты, или коллоидные силикаты, или быстрорастворимые гидратированные силикаты, например, метасиликат (ТУ 6-18-161-82), жидкое высокомодульное стекло марки «Нафтосил», выпускающееся по ТУ 2145-002-12979928-2001 или коллоидные силикаты натрия марок «Сиалит» (ТУ 2145-010-43811938-97) и «Сиалит-30-5» (ТУ 2145-002-43811938-97), «Кремнезоль К3-ТМ», или быстрорастворимый гидратированный силикат натрия марки «Сиалит-60-3» (ТУ 2145-004-43811938-99), или морозостойкое стекло марки «Номак» (ТУ 2145-015-13002378-95) или смеси их.
В качестве высокодисперсного гидрофобного материала используют химически модифицированные по поверхности высокодисперсные гидрофобные материалы тетрафторэтилена (тфэ), оксидов титана, железа, хрома, цинка, алюминия, поливинилового спирта (пс), а также высокодисперсные гидрофобные материалы оксидов кремния: белую сажу, тальк, аэросил, перлит, а также кремнеземы марки Полисил.
Вышеуказанные высокодисперсные гидрофобные материалы представляют собой химически инертные материалы со средним размером индивидуальных частиц от 0,1 до 100 мкм и насыпной плотностью от 0,1 до 2,0 г/см3, с краевыми углами смачивания от 114 до 178° и степенью гидрофобности от 96,0 до 99,99%. Они не оказывают вредного воздействия на человека и окружающую среду.
В качестве водопоглощающего полимера используются водопоглощающие полимеры серий АК-639 и АК-639 Г марок В-105, В-210, В-415, В-615, В-820 (ТУ 6-02-00209912-59-2003) и водопоглощающий полимер марки «Аквамомент», выпускаемые в г.Саратове фирмой ООО «Гель-Сервис».
Водопоглощающие полимеры серии АК-639 и АК-639 Г марок В-105, В-210, В-415, В-615, В-820 представляют собой порошок или гранулы, имеющие массовую долю нелетучих веществ не менее 90 мас.%, равновесное водопоглощение в дистиллированной воде не менее 100-800 г/г, в пресной воде при минерализации 0,3 г/л не менее 100-400 г/г, в пластовой воде 20-50 г/г.Температура до 80°С не оказывает влияния на свойства полимеров.
Водопоглощающий полимер марки «Аквамомент» является полимером, мгновенно поглощающим воду при контакте ней. Полимер имеет размер частиц менее 0,1 мм, равновесное водопоглощение в дистиллированной воде не менее 900-1000 г/г, в пресной воде при минерализации 0,3 г/л до 300 г/г.
Кроме того, можно использовать водопоглощающий полимер марки FS - 305 по техническому паспорту ООО «СНФ С.А» г.Москва), представляющий собой белый порошок с адсорбцией дистиллированной воды 400 г/г.
В качестве ПАВ или смеси их используют водорастворимые, водомаслорастворимые, масловодорастворимые ПАВ или смесь их.
В качестве водорастворимых ПАВ используют анионные ПАВ, например, АПАВ марки Сульфонол, выпускающийся по ТУ 2481-004-48482528-99 на ЗАО «Бурсинтез-М», либо сульфонаты разных марок, а также водорастворимые неионогенные ПАВ, например, нонилфенол, оксиэтилированный 12 молями окиси этилена (АФ9-12) неонол-12, выпускающийся по ТУ-2483-077-05766801-98 на ОАО Татнефть», либо его товарную форму СНО-3Б и СНО-4Д, либо НПАВ марки ОП-10, либо смесь анионного и неионогенного водорастворимых ПАВ, например, Нефтенол ВВД, выпускающийся на АОЗТ «ХИМЕКО-ГАНГ» по ТУ 2483-015-17197708-97.
Кроме того, в качестве поверхностно-активного вещества для обработки призабойных зон нагнетательных скважин используют смеси водо-маслорастворимых ПАВ в виде готовых композиций, например, моющие препараты МЛ-80 БС (ТУ 2458-040-52412574-03), или МЛ-81Б, содержащие смесь водорастворимого анионного ПАВ (23-28%) и неионогенного маслорастворимого ПАВ (12 мас.%) (ТУ 2481-007-50622652-99-2002), производимые на ЗАО НПФ «Бурсинтез-М», и моющий препарат марки «МЛ-супер», выпускаемый фирмой «Дельта-пром» в г.Самаре по ТУ 2383-002-51881692-2000.
Для обработки призабойных зон добывающих скважин используют смесь масловодорастворимых ПАВ в виде готовых композиций, например, нефтенол Н - композицию нефте- и нефте-водорастворимых сульфоэтоксилатов, неионогенных ПАВ и высокомолекулярных нефтяных сульфонатов, или нефтенол-001.М - продукты совместной переработки кислых нефтяных гудронов (отходов производства от олеумной и сернокислотной очистки минеральных масел) и оксиэтилированного алкилфенола марки ОП-4 (НПО «СинтезПАВ»).
В качестве катионного ПАВ используют гидрофобизатор ИВВ-1, представляющий собой четвертичное соединение, получаемое конденсацией третичного амина и бензилхлорида, выпускающийся по ТУ 2482-006-48482528-89 на ЗАО НПФ «Бурсинтез-М» в виде прозрачной жидкости с массовым содержанием активного вещества не менее 50%, хорошо растворим в воде, спиртах и ацетоне, в нефти нерастворим.
В качестве растворителя и разбавителя используют минерализованную сточную, подтоварную (техническую) или пластовую воду хлоркальциевого типа.
В качестве водорастворимого анионного полимера используют гидролизованные полиакриламиды (ПАА), как низкомолекулярные, а так и высокомолекулярные ПАА с ММ=0,5-18·106 и степенью гидролиза 5-20%, например, ПАА, как отечественного производства, например, низкомолекулярные ПАА марок АК-631 и АК-642 с ММ 1,0-1,8×106 и степенью гидролиза 5-10%, выпускающиеся по ТУ 6-02-00209912-41-94 и ТУ 6-02-00209912-65-99 фирмой ООО «Гель-Сервис», г.Саратов, так и ПАА импортного производства, например, производства Англии низкомолекулярный анионный полимер марки Alkoflood 254 S, аналог ПАА с ММ 0,5-0,8×106 и степенью гидролиза 5-6% или высокомолекулярные полимеры марок CS-131, CS-134, PDA-1004, PDA-1041, DKS-ORP-F-40NT производства Японии ПАА с ММ 5-18×10 6 и степенью гидролиза 5-20%, биополимеры на основе глюкозы, маннозы, соли глюконовой кислоты и ацетильных радикалов, не чувствительных к высокой температуре -гетерополисахарид марки ГПС или полимерная смесь производных полисахаридов марки Полимерный реагент ПС, или продукт взаимодействия щелочной целлюлозы с монохлоруксусной кислотой - карбоксиметилцеллюлозу (КМЦ) со степенью полимеризации СП=350-1200 и степенью замещения по карбоксильным группам СЗ=80-90, например, КМЦ марок КМЦ-500, КМЦ-600, КМЦ-700, КМЦ-800, оксиэтилированную целлюлозу марки ОЭЦ или гидроэтилцеллюлозу ГЭЦ и ее модификации, или метилцеллюлозу марки МЦ, или модифицированную лигносульфонатами натрийкарбоксиметилцеллюлозу марок Полицел КМЦ-М и Полицел КМЦ-ТС, или высоковязкую полианионную целлюлозу марки Полицел ПАЦ, выпускающуюся по ТУ 2231-013-32957739-00, полиметакриловую кислоту (ПМАК) или многофункциональный полиакриловый реагент марки Лакрис-20, выпускающийся по ТУ 6-01-2-793-86, или сополимер метакриловой кислоты или метакриламид марки Метас, полимер марки Полицел СК-Н, выпускающийся по ТУ 2231-001-32957739-98, поливинилацетатные полимеры, например, поливинилацетат (ПВА) и поливиниловый спирт (ПВС), сополимеры винилацетата и винилового спирта.
В качестве соли поливалентного металла используют соли трехвалентного хрома или алюминия: ацетаты, сульфаты, хлориды, хромокалиевые квасцы (хкк), отходы хромовых квасцов (охк), алюмокалиевые квасцы (акк), или соли с более высокой валентностью хрома или марганца: хроматы, бихроматы, перманганаты одновалентных катионов, например, хроматы и бихроматы калия и натрия, перманганат калия.
В качестве соли поливалентного металла используют, например, ацетат хрома, который выпускают в виде водного раствора по ТУ 6-02-00209912-70-00 в г.Саратове фирмой ООО «Гель-Сервис», натрия бихромат технический выпускают по ГОСТ 2651-78 фирмой ООО «КВАРТ» в г.Тюмени, квасцы хромокалиевые выпускают по ГОСТ 4162-79 фирмой АН «НТО «ИТИН» в г.Москве, сульфат алюминия выпускают по ГОСТ 12966-85 в институте «ТатНИПИнефть АО «Татнефть» в г.Бугульме.
В качестве кислоты используют неорганические или органические кислоты или смесь кислот, например, для обработки терригенных коллекторов обычно используют соляную кислоту или смесь соляной с плавиковой кислотой, или смесь соляной с кремнефтористо-водородной кислотой, или смесь сульфаминовой кислоты с фторидом аммония, или смеси сульфаминовой кислоты с бифторидом аммония, для карбонатных - соляную или смесь соляной с уксусной, или смесь соляной и концентрата НМК; для полимиктовых глиносодержащих - фосфорную или ортофосфорную кислоту.
В скважину закачивают последовательно две оторочки композиций.
Первая закачиваемая оторочка содержит дисперсию высокодисперсного гидрофобного материала в среде, по меньшей мере, одного кремнийсодержащего вещества.
Закачиваемая композиция имеет способность существенно изменять смачиваемость породы, а именно, увеличивать гидрофобизацию породы пласта и улучшать адгезию закачиваемой композиции к породе.
В присутствии высокодисперсного гидрофобного материала изменяются свойства закачиваемых композиций, поэтому после закачки их изменяются фильтрационные характеристики коллекторов как для воды, так и для нефти.
Благодаря субмикронным размерам частиц используемого материала, на 2-3 порядка меньшим среднего размера пор коллектора, высокодисперсный гидрофобный материал любой модификации легко проникает в призабойную зону пласта, меняя энергетику поверхности (смачиваемость) пласта.
За счет уменьшения проницаемости высокопроницаемых пропластков для притока пластовых вод и увеличения гидрофобизации поверхности породы пласта после закачки композиции происходит перераспределение фильтрационных потоков, в результате чего увеличивается приток нефти из микропор низкопроницаемых интервалов.
При закачке в высокопроницаемые трещиноватые пласты первая закачиваемая оторочка в качестве наполнителя может содержать водопоглощающий полимер.
В пласте при наличии воды водопоглощающий полимер набухает, создавая дополнительные повышенные фильтрационные сопротивления в пористой среде.
В зависимости от геофизических условий первая закачиваемая оторочка может содержать, по меньшей мере, одно поверхностно-активное вещество ПАВ.
Введение ПАВ в закачиваемые композиции снижает межфазное натяжение на границе нефть - поверхностно-активная композиция и облегчает закачку поверхностно-активных композиций в пласт.
В таблицах 1.1 и 1.2 указано содержание компонентов первой закачиваемой оторочки по заявляемому способу и по прототипу.
По заявляемому способу закачивают дисперсию 0,1-3,0 мас.% высокодисперсного гидрофобного вещества в среде, по меньшей мере, одного кремнийсодержащего вещества (см. табл.1.1).
Первая оторочка может содержать 0,1-5,0 мас.% водопоглощающего полимера и/или 0,1-3,0 мас.%, по меньшей мере, одного ПАВ.
По прототипу (см. табл.1.2) закачивают в качестве первой оторочки дисперсию гель-частиц в водном растворе полимера.
По заявляемому способу в отличие от прототипа закачка маловязкой дисперсии гидрофобного материала в среде кремнийсодержащего вещества приводит к глубокому проникновению дисперсии в пласт и увеличению гидрофобизации поверхности породы пласта, в результате чего происходит вытеснение остаточной нефти из интервалов неоднородного по проницаемости пласта. После закачки дисперсии в пласте происходит изоляция притока пластовых вод в результате образования кремнийсодержащего геля. Так как дисперсия может содержать ПАВ, после закачки поверхностно-активной композиции, содержащей дисперсию гидрофобного материала, увеличиваются нефтевытесняющие свойства, происходит перераспределение фильтрационных потоков и вытеснение нефти из низкопроницаемых насыщенных нефтью интервалов. Поэтому предлагаемый способ можно использовать не только для изоляции пластовых вод в скважину, но и для регулирования разработки нефтяных месторождений.
При закачке первой оторочки по предлагаемому способу в водонасыщенную зону нефтенасыщенного пласта в качестве кремнийсодержащего вещества используют, по меньшей мере, одно маслорастворимое кремнийорганическое вещество из вышеуказанных маслорастворимых кремнийорганических веществ, которое смешивают с гидрофобным материалом - ВДГМ и закачивают в скважину.
После закачки указанной дисперсии в водонасыщенную зону пласта происходит гидролиз кремнийорганического вещества по эфирной связи Si - OR пластовой минерализованной водой с последующей гидролитической поликонденсацией, в результате чего образуется нерастворимый гидрофобный кремнийорганический полимер, который надежно закупоривает поры пласта. За счет использования в закачиваемой композиции гидрофобного материала меняется смачиваемость породы пласта, а именно, увеличивается гидрофобизация породы, поэтому закачиваемая гидрофобная композиция хорошо удерживается в пласте за счет увеличения адгезии закачиваемой композиции к породе пласта.
Перед закачкой в нефтенасыщенную зону продуктивного пласта закачиваемую указанную дисперсию ВДГМ в среде маслорастворимого кремнийорганического вещества из-за недостатка воды в пласте подвергают гидролизу на поверхности.
Маслорастворимые хлорсодержащие кремнийорганические вещества при приготовлении гидролизата разбавляют минерализованной пластовой или сточной водой, имеющейся на промысле в объемном соотношении: на 1 об. часть указанной дисперсии берется 0,5-2 об. части разбавителя.
В маслорастворимые кремнийорганические вещества, не содержащие хлора, в качестве катализатора добавляют соляную кислоту в виде 0,5-4,0%-ного раствора соляной кислоты на минерализованной пластовой воде в тех же соотношениях.
При закачке в промытые и трещиноватые зоны пласта первая оторочка может содержать водонабухающий полимер в количестве 0,1-5,0 мас.%.
Чтобы исключить набухание водопоглощающего полимера преждевременно, прежде окончания процесса доставки его в пласт в промытые и трещиноватые зоны неоднородного пласта, а именно, в место максимально эффективного его использования, водопоглощающий полимер доставляется в среде кремнийсодержащего вещества. По окончании доставки в пласт водопоглощающий полимер при контакте с водой набухает и надежно изолирует промытые и трещиноватые зоны неоднородного пласта, выдерживая высокие фильтрационные сопротивления.
В первую очередь перекрываются крупные поры и трещины, по которым поступает вода, в результате чего существенно снижается обводненность скважин.
После закачки первой оторочки в скважину закачивают вторую оторочку.
В таблице 2 указано содержание компонентов второй оторочки композиции по заявляемому способу и по прототипу.
Вторая закачиваемая оторочка содержит композицию 0,01-5,0 мас.% водного раствора водорастворимого полимера, подкисленного до рН 1-3; 0,1-3,0 мас.%, по меньшей мере, одного ПАВ и 0,01-0,3 мас.% соли поливалентного металла.
В отличие от прототипа, содержащего полимерную композицию со сшивателем, по заявляемому способу вторая закачиваемая оторочка представляет собой подкисленную поверхностно-активную полимерную композицию со сшивателем.
Введение ПАВ в закачиваемые композиции по заявляемому способу снижает межфазное натяжение на границе нефть - кислотный состав и облегчает закачку кислотных композиций в пласт.
При введении ПАВ в закачиваемые композиции, повышается поверхностная активность композиций, и увеличиваются их нефтевытесняющие свойства.
При растворении АПАВ в растворах кислот образуются сульфокислоты, при растворении НПАВ - оксониевые соединения. При растворении смесей ПАВ, например, АПАВ и НПАВ, образуются смешанные комплексы сульфокислот и оксониевых соединений.
Известно, что кислые растворы ПАВ по сравнению с нейтральными растворами имеют более низкое межфазное натяжение на границе с вытесняемой нефтью, а следовательно, более высокую нефтевытесняющую способность.
Вышеперечисленные сульфокислоты, оксониевые соединения и звенья акриловой кислоты или другие функциональные группы в кислотных полимерных композициях взаимодействуют между собой за счет водородной связи и образуют высокомолекулярные комплексы, которые обладают повышенными нефтевытесняющими и реологическими неньютоновскими свойствами.
В пласте при повышении рН выше 3 увеличение вязкости композиции происходит за счет связывания высокомолекулярных комплексов катионом поливалентного металла с образованием сшитых до вязкоупругого состояния модифицированных полимеров трехмерной структуры.
При закачивании известных композиций, включая композиции по прототипу, в промытых и трещиноватых зонах неоднородного пласта создаются фильтрационные сопротивления, которые являются недостаточно высокими для значительного снижения обводненности добывающих скважин и эффективного выравнивания приемистости нагнетательных скважин, а также в связи с низкой гидрофобностью композиций мало предпосылок для значительного повышения нефтеотдачи пласта из-за узкой области их применения и низких нефтевытесняющих свойств.
По предлагаемому способу закачиваемые композиции имеют высокую гидрофобность, присутствие ПАВ в кислотной форме значительно снижает межфазное натяжение на границе нефть-кислотный состав, повышает поверхностную активность композиций и их нефтевытесняющие свойства. Кроме того, закачиваемые композиции создают высокие фильтрационные сопротивления для значительного снижения обводненности, а также увеличивают нефтевытесняющую способность за счет увеличения гидрофобизации поверхности породы, подключая к разработке застойные и слабодренируемые зоны пласта.
Приготовление композиций первой и второй оторочек по заявляемому способу и по прототипу и закачку их в скважину производят так.
Для приготовления первой оторочки в одной емкости перемешивают, по меньшей мере, одно кремнийсодержащее вещество и высокодисперсный гидрофобный материал. Первая оторочка может содержать водопоглощающий полимер и/или по меньшей мере, одно ПАВ.
При закачке в водонасыщенную зону закачивают в скважину дисперсию гидрофобного материала в среде, по меньшей мере, одного маслорастворимого кремнийорганического вещества.
При закачке в нефтенасыщенную зону при недостатке воды в пласте перед закачкой на поверхности производят гидролиз указанной дисперсии путем разбавления водой и выдержки реакционной массы до водорастворимого состояния в результате гидролиза.
Указанную дисперсию ВДГМ предварительно разбавляют разбавителем, в качестве которого для маслорастворимого кремнийорганического вещества, содержащего хлор, используют минерализованную пластовую воду хлоркальциевого типа, а для маслорастворимого кремнийорганического вещества, не содержащего в своем составе хлора, используют 0,5-4,0 мас.% раствор соляной кислоты на минерализованной пластовой воде хлоркальциевого типа, при соотношении: на 1 об. ч. указанной дисперсии 0,5-2 об. ч. разбавителя. Компоненты первой оторочки перемешивают и закачивают в пласт.
В другой емкости готовят при тщательном перемешивании водный раствор 0,01-5,0 мас.% водного раствора водорастворимого анионного полимера на минерализованной сточной, подтоварной (технической) или разбавленной пластовой воде. Затем в водный раствор полимера при перемешивании добавляют 0,1-3,0 мас.%, по меньшей мере, одного ПАВ и кислоту до рН 1-3. После этого при перемешивании дозируют 1,0-10,0%-ный раствор соли поливалентного катиона до концентрации сшивателя в растворе 0,01-0,3 мас.%, перемешивают до однородной массы и закачивают в качестве второй оторочки.
Закачанную вторую полимерную оторочку можно дозакрепить закачкой в скважину третьей оторочки, содержащей, по меньшей мере, одно кремнийсодержащее вещество для сохранения технологических свойств второй оторочки, ее целостности и эффективного перераспределения закачиваемых за оторочкой термостабильных агентов.
Технология применения закачиваемых композиций по предлагаемому способу заключается в закачке их в пласт из расчета 0,5-50 м3 на метр толщины пласта и продавке их из ствола скважины в пласт закачиваемой водой для нагнетательных скважин или безводной нефтью для нефтяных скважин, выдержке в пласте в течение 12-36 час и пуске скважины в эксплуатацию для нефтяных скважин и закачки воды для нагнетательных скважин.
Разработанную технологию закачки в виде закачиваемых оторочек используют для разработки неоднородного нефтяного пласта, а также технология может быть использована для регулирования профиля приемистости нагнетательных скважин и для изоляции водопритока в нефтяные скважины.
Для нагнетательных скважин композиции закачивают в пласт до снижения приемистости скважины на 30-50%.
Для нефтяных скважин композиции закачивают в пласт для проведения изоляционных работ по ограничению водопритока в нефтяные скважины, что приводит к увеличению добычи нефти на каждую скважино-операцию с одновременным уменьшением добычи воды.
Для определения снижения проницаемости коллекторов и нефтевытесняющей способности композиций были проведены фильтрационные исследования.
Пример 1. По предлагаемому способу последовательно закачивают две оторочки композиций в водонасыщенный керн. Первая оторочка содержит дисперсию 0,1-3,0 мас.% высокодисперсного гидрофобного материала в среде, по меньшей мере, одного маслорастворимого кремнийорганического вещества (см. табл.1.1.). Например, в синтезе 4, в 99,0 мас.% олигоорганоэтоксихлорсилоксанов (продукт 119-204) добавляют небольшими порциями при тщательном перемешивании 1 мас.% гидрофобного оксида хрома и закачивают в водонасыщенный керн.
Вторая оторочка содержит водный раствор 0,01-5,0 мас.% водорастворимого анионного полимера на разбавленной пластовой, сточной или подтоварной (технической) воде; 0,10-3,0 мас%, по меньшей мере, одного ПАВ, кислоту до рН 1-3 и 0,01-0,30 мас.% соли поливалентного катиона. Например, в синтезе 5, (см. табл.2) в сточной воде минерализацией 15 г/л растворяют 0,5 мас.% анионного полимера марки РДА-1004, добавляют соляную кислоту до рН 1, тщательно перемешивают, затем добавляют 1,0 мас.% СНО-ЗБ, перемешивают, затем добавляют 0,05 мас.% ацетата хрома, тщательно перемешивают и закачивают в керн.
Для фильтрации предлагаемого состава заранее готовят снабженные рубашками для термостатирования колонки из нержавеющей стали длиной 220 мм и внутренним диаметром 32 мм, которые заполняют смесью, содержащей песчаники, которые неравномерно расчленены прослоями плотных разностей алевритов и глин, с месторождения Бобриковского горизонта Визейского яруса Самарской области. Модели под вакуумом насыщают водой, термостатируют при 85°С, весовым способом определяют исходную проницаемость кернов по пресной воде, которая составила 10,1,-13,8 мкм2 (K1 ). Затем предлагаемые композиции фильтруют на фильтрационной установке с целью определения снижения проницаемости. С этой целью через колонку прокачивают один объем пор предлагаемых композиций. После этого колонку выдерживают в термостате при 85°С в течение 6 час для образования геля. Затем прокачивают через керн три объема пор воды.
После этого определяют проницаемость по воде (K2). Уменьшение проницаемости в % определяют по изменению проницаемости керна по воде до и после прокачки композиций: K1/K2 100%.
Результаты фильтрационных исследований представлены в табл.3.
Пример, описанный выше в тексте, см. в табл.3 синтез 5.
Пример 2. По прототипу закачивают последовательно две оторочки в водонасыщенный керн. Первая оторочка содержит дисперсию гель-частиц 0,1-1,0 мас.% водопоглощающего полимера в растворе 0,30 мас.% анионного полимера (см. Табл.1.2). Например, в синтезе 2 раствор 0,30 мас.% анионного полимера марки РДА-1004 в сточной воде минерализацией 15 г/л, содержащий дисперсию 0,5 мас.% гель-частиц водопоглощающего полимера марки FS-305, закачивают в водонасыщенный керн.
Вторая оторочка содержит водный раствор 0,01-5,0 мас.% водорастворимого анионного полимера на разбавленной пластовой, сточной или подтоварной (технической) воде и 0,01-0,30 мас.% соли поливалентного катиона. Например, в синтезе 6, (см. табл.2) в сточной воде минерализацией 15 г/л растворяют 0,5 мас.% анионного полимера марки РДА-1004, затем добавляют при перемешивании 0,05 мас.% ацетата хрома, тщательно перемешивают и закачивают в керн.
По прототипу приготовленные композиции фильтруют через водонасыщенный керн на фильтрационной установке с целью определения понижения проницаемости коллектора (см. пример 1).
После этого колонку выдерживают в термостате при 85°С в течение 6 час для образования геля. Затем прокачивают через керн три объема пор воды. После этого определяют проницаемость по воде (K2). Уменьшение проницаемости в % определяют по изменению проницаемости керна по воде до и после прокачки композиции: K1/K2 100%.
Результаты фильтрационных исследований представлены в табл.3.
Пример, описанный выше в тексте, см. в табл.3 синтез 6.
Пример 3. По предлагаемому способу последовательно закачивают две оторочки в нефтенасыщенный керн. Первая оторочка содержит дисперсию 0,1-3,0 мас.% высокодисперсного гидрофобного материала в среде, по меньшей мере, одного маслорастворимого кремнийорганического вещества (см. табл.1.1.). Например, в синтезе 15, в 98,0 мас.% олигоорганоэтоксихлорсилоксанов (продукт 119-204) добавляют небольшими порциями при тщательном перемешивании 2 мас.% гидрофобного оксида титана. Для гидролиза маслорастворимый продукт разбавляют минерализованной водой 15 г/л в соотношении 1:1 и закачивают в нефтенасыщенный керн.
Вторая оторочка содержит водный раствор 0,01-5,0 мас.% водорастворимого анионного полимера на разбавленной пластовой, сточной или подтоварной (технической) воде, 0,10-3,0 мас%, по меньшей мере, одного ПАВ, кислоту до рН 1-3 и 0,01-0,30 мас.% соли поливалентного катиона. Например, в синтезе 9, (см. табл.2) в сточной воде минерализацией 15 г/л растворяют 2,0 мас.% анионного полимера марки АК-642, добавляют фосфорную кислоту до рН 3, тщательно перемешивают, затем добавляют 3,0 мас.% ОП-10, перемешивают, затем добавляют 0,10 мас.% хромово-калиевых квасцов, тщательно перемешивают и закачивают в керн.
По предлагаемому способу приготовленные композиции фильтруют через насыщенный нефтью керн с остаточной водонасыщенностью 23-36% на фильтрационной установке с целью определения повышения проницаемости коллектора по нефти.
Приготовленные для фильтрации керны из нержавеющей стали длиной 220 мм и внутренним диаметром 32 мм заполняют вышеуказанной смесью. Модели под вакуумом насыщают водой, весовым способом определяют исходную проницаемость кернов по воде, затем керн насыщают нефтью и определяют остаточную водонасыщенность и проницаемость по нефти, которые составили 23-38,0% и 1,65-3,50 мкм2 (K1) (моделирование обработки нефтенасыщенной зоны пласта). Через колонку прокачивают один объем пор предлагаемых композиций.
Затем колонку выдерживают в термостате при 85°С в течение 6 час для образования геля. После этого определяют проницаемость по нефти (K2), прокачивая три объема пор керна нефти. Увеличение проницаемости в % определяют по изменению проницаемости керна по нефти после и до прокачки композиции: K2/K1·100%.
Результаты фильтрационных исследований представлены в табл.4.
Пример, описанный выше в тексте, см. в табл.4 синтез 9.
Пример 4. По прототипу закачивают последовательно две оторочки в нефтенасыщенный керн. Первая оторочка содержит дисперсию гель-частиц 0,1-1,0 мас.% водопоглощающего полимера в растворе 0,30 мас.% анионного полимера (см. Табл.1.2.). Например, в синтезе 7 раствор 0,30 мас.% анионного полимера марки АК-631 в сточной воде минерализацией 15 г/л, содержащий дисперсию 1,0 мас.% гель-частиц водопоглощающего полимера марки АК-639, закачивают в нефтенасыщенный керн.
Вторая оторочка содержит водный раствор 0,01-5,0 мас.% водорастворимого анионного полимера на разбавленной пластовой, сточной или подтоварной (технической) воде и 0,01-0,30 мас.% соли поливалентного катиона. Например, в синтезе 10, (см. табл.2) в сточной воде минерализацией 15 г/л растворяют 2,0 мас.% анионного полимера марки АК-642, затем добавляют при перемешивании 0,10 мас.% хромово-калиевых квасцов, тщательно перемешивают и закачивают в керн.
По прототипу приготовленные композиции фильтруют через нефтенасыщенный керн на фильтрационной установке с целью определения повышения проницаемости коллектора (см. Пример 3).
Затем колонку выдерживают в термостате при 85°С в течение 6 час для образования геля. После этого определяют проницаемость по нефти (K2), прокачивая три объема пор керна нефти. Увеличение проницаемости в % определяют по изменению проницаемости керна по нефти после и до прокачки композиции: K2/K1 100%.
Результаты фильтрационных исследований представлены в табл.4.
Пример, описанный выше в тексте, см. в табл.4 синтез 10.
Пример 5. По предлагаемому способу последовательно закачивают две оторочки. Первая оторочка содержит дисперсию 0,1-3,0 мас.% высокодисперсного гидрофобного материала в среде, по меньшей мере, одного маслорастворимого кремнийорганического вещества (см. табл.1.1.). Например, в синтезе 5, в 95,5 мас.% ЭТС-40 добавляют небольшими порциями при тщательном перемешивании 2 мас.% гидрофобного Полисила П-1, затем добавляют 2,0 мас.% водопоглощающего полимера марки Аквамомент и 0,5 мас.% неонола-12 перемешивают и закачивают в нефтенасыщенный керн.
Вторая оторочка содержит водный раствор 0,01-5,0 мас.% водорастворимого анионного полимера на разбавленной пластовой, сточной или подтоварной (технической) воде, 0,10-3,0 мас%, по меньшей мере, одного ПАВ, кислоту до рН 1-3 и 0,01-0,30 мас.% соли поливалентного катиона. Например, в синтезе 11, (см. табл.2) в сточной воде минерализацией 15 г/л растворяют 3,0 мас.% анионного полимера марки КМЦ-600, добавляют смесь соляной с уксусной кислотой до рН 2, тщательно перемешивают, затем добавляют 2,0 мас.% Нефтенола-ВВД, перемешивают, затем добавляют 0,20 мас.% алюмокалиевых квасцов, тщательно перемешивают и закачивают в керн.
По прототипу закачивают последовательно две оторочки в нефтенасыщенный керн. Первая оторочка содержит дисперсию гель-частиц 0,1 -1,0 мас.% водопоглощающего полимера в растворе 0,30 мас.% анионного полимера (см. табл. 1.2). Например, в синтезе 4 раствор 0,30 мас.% анионного полимера марки АК-642 в сточной воде минерализацией 15 г/л, содержащий дисперсию 0,5 мас.% гель-частиц водопоглощающего полимера марки АК-639, закачивают в керн.
Вторая оторочка содержит водный раствор 0,01-5,0 мас.% водорастворимого анионного полимера на разбавленной пластовой, сточной или подтоварной (технической) воде и 0,01-0,30 мас.% соли поливалентного катиона. Например, в синтезе 12, (см. табл.2) в сточной воде минерализацией 15 г/л растворяют 3,0 мас.% анионного полимера марки КМЦ-600, затем добавляют при перемешивании 0,20 мас.% алюмокалиевых квасцов, тщательно перемешивают и закачивают в керн.
Нефтевытесняющую способность предлагаемых составов определяют в условиях доотмыва остаточной нефти на линейной модели однородного пласта, представляющей собой вышеописанную колонку из нержавеющей стали. Колонку заполняют вышеописанной смесью. Модель под вакуумом насыщают водой, термостатируют при 85°С, весовым способом определяют проницаемость керна по воде.
После этого в колонку под давлением нагнетают нефть до тех пор, пока на выходе из нее не появится чистая (без воды) нефть, затем определяют начальную нефтенасыщенность керна, которая составила 64,0-77,0%. В фильтрационных работах используют природную нефть плотностью 842 кг/м3 и динамической вязкостью 8,5 мПа·с при 20°С. Начальное вытеснение проводят водой (три поровых объема) и определяют коэффициент вытеснения нефти по воде. Затем через керн фильтруют один поровый объем испытуемых вышеуказанных композиций и три поровых объема воды, определяют прирост и общий коэффициент вытеснения нефти.
Результаты фильтрации композиций по предлагаемому способу и прототипу по определению нефтевытесняющей способности составов представлены в табл.5
Примеры, описанные выше в тексте, см. в табл.5 синтезы 11 и 12.
Техническим результатом является повышение эффективности способа разработки неоднородного нефтяного пласта за счет улучшения реологических и гидрофобизирующих свойств закачиваемых композиций, а также увеличения их нефтевытесняющих свойств.
За счет закачки в пласт предлагаемых композиций в виде двух оторочек, включающих дисперсию высокодисперсного гидрофобного материала в среде, по меньшей мере, одного кремнийсодержащего вещества и композицию поверхностно-активного модифицированного полимера со сшивателем, создаются повышенные сопротивления в пористой среде, и в первую очередь перекрываются крупные поры и трещины, по которым поступает вода, в результате чего существенно снижается обводненность скважин и изменяется смачиваемость породы пласта.
За счет введения ПАВ или смеси ПАВ в композицию улучшаются фильтрационные характеристики скважины, в результате чего увеличивается ее фазовая проницаемость по нефти.
За счет введения высокодисперсного гидрофобного материала в закачиваемые композиции первой оторочки изменяется смачиваемость поверхности породы, а именно, увеличивается гидрофобизация породы коллектора. При этом снижается поверхностное натяжение на границе раздела фаз вода - порода - нефть и увеличивается относительная проницаемость пласта по нефти, увеличивается нефтевытесняющая способность состава, в результате чего повышается дебит нефти.
Таблица 1.1 | |||||||||
Содержание компонентов первой оторочки по заявляемому способу | |||||||||
№ п/п | Содержание компонентов, мас.%. | Вода, М=15 г/л, объемное соотношение или др. компонентов | |||||||
Кремнийсодержащее вещество | Высокодисперсный гидрофобный материал | Водопоглощающий полимер | ПАВ или смесь ПАВ | ||||||
марка | к-во | марка | к-во | марка | к-во | марка | к-во | ||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
1 | продукт 119-204 | 99,85 | тальк | 0,05 | аквамомент | 0,05 | неонол-12 | 0,05 | - |
2 | АКОР Б-100 | 99,8 | аэросил | 0,1 | АК-639 | 0,10 | - | - | - |
3 | АКОРБ-100 | 98,4 | оксид титана | 0,5 | АК-639 | 1,0 | ИВВ-1 | 0,1 | - |
4 | продукт 119-204 | 99,0 | оксид хрома | 1,0 | - | - | - | - | - |
5 | ЭТС-40 | 95,5 | полисил П-1 | 2,0 | аквамомент | 2,0 | неонол-12 | 0,5 | - |
6 | ЭТС-32 | 97,0 | аэросил | 3,0 | - | - | - | - | - |
7 | продукт 119-204 | 98,0 | полисил П-1 | 2,0 | - | - | - | - | - |
8 | диметилхлорсилан | 95,0 | тальк | 4,0 | - | - | МЛ-супер | 1,0 | - |
9 | продукт 119-204 | 98,0 | полисил ДФ | 2,0 | - | - | - | - | - |
10 | ЭТС-32 | 93,0 | оксид алюминия | 2,0 | АК-639 | 3,0 | ОП-10 | 2,0 | - |
11 | ЭТС-40 | 94,0 | тальк | 1,0 | FS-305 | 5,0 | - | - | - |
12 | диметилхлорсилан | 89,0 | полисил П-1 | 2.0 | FS-305 | 6,0 | нефтенол ВВД | 3,0 | - |
13 | ЭТС-40 | 98,0 | оксид цинка | 2,0 | - | - | - | - | для гидролиза разбл.4,0% HCl на мин. воде в соотн. 1:0,5 |
14 | АКОРБ-100 | 95,5 | перлит | 1,0 | - | - | МЛ-81Б | 3,5 | для гидролиза разбавляют минер. водой в соотн. 1:2 |
15 | продукт 119-204 | 98,0 | оксид титана | 2,0 | - | - | - | - | для гидролиза разбавляют минер. водой в соотн. 1:1 |
16 | сиалит 30-5 5% раствор | 97,0 | аэросил | 1,0 | - | - | МЛ-супер | 2,0 | |
17 | продукт 119-296Т | 98,0 | тальк | 2,0 | - | - | - | - | |
18 | Номак 15% раствор | 96,0 | перлит | 1,0 | - | - | ОП-10 | 3,0 | |
19 | сиалит 60-3 10% раствор | 98,0 | полисил ДФ | 2,0 | - | - | - | - | |
20 | полисиликат 20% раствор | 96,5 | оксид хрома | 1,5 | - | - | нефтенол ВВД | 2,0 |
Таблица 1.2 | |||||
Содержание компонентов первой оторочки композиции по прототипу | |||||
№ п/п | Содержание компонентов, мас.% | ||||
Анионный полимер | Водопоглощающий полимер | Вода, м=15 г/л | |||
марка | к-во | марка | к-во | ||
1 | 2 | 3 | 4 | 5 | 6 |
1 | CS-134 | 0,30 | FS - 305 | 0,10 | 99,6 |
2 | PDA-1004 | 0,30 | FS - 305 | 0,5 | 99,2 |
3 | CS-131 | 0,30 | АК - 639 | 0,5 | 99,2 |
4 | АК - 642 | 0,30 | АК - 639 | 0,5 | 99,2 |
5 | KW-600 | 0,30 | АК - 639 | 1,0 | 98,7 |
6 | Alkoflood 254 S | 0,30 | АК - 639 | 1,0 | 98,7 |
7 | AK-631 | 0,30 | АК - 639 | 1,0 | 98,7 |
Таблица 2 | ||||||||
Содержание компонентов второй оторочки, подкисленной до рН 1-3, по заявляемому способу и по прототипу | ||||||||
№ п/п | Наименование способа | Содержание компонентов, мас.% | ||||||
Спол | Спав | Сспм | Вода | |||||
марка | к-во | марка | к-во | марка | к-во | |||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1 | Заявляемый | PDA-1041 | 0,005 | Неонол-12 | 0,05 | Хромово-калиевые квасцы | 0,005 | 99,94 |
2 | Заявляемый | PDA-1041 | 0,01 | ИВВ-1 | 0,10 | Хромово-калиевые квасцы | 0,01 | 99,88 |
3 | Заявляемый | CS-134 | 0,30 | сульфонол | 0,50 | Хромово-калиевые квасцы | 0,02 | 99,18 |
4 | Прототип | CS-134 | 0,30 | - | - | Хромово-калиевые квасцы | 0,02 | 99,68 |
5 | Заявляемый | PDA-1004 | 0,50 | СНО-ЗБ | 1,0 | ацетат хрома | 0,05 | 98,45 |
6 | Прототип | PDA-1004 | 0,50 | - | - | ацетат хрома | 0,05 | 99,45 |
7 | Заявляемый | CS-131 | 1,0 | МЛ-супер | 2,0 | Хромат натрия | 0,03 | 96,97 |
8 | Прототип | CS-131 | 1,0 | - | - | Хромат натрия | 0,03 | 98,97 |
9 | Заявляемый | AK-642 | 2,0 | ОП-10 | 3,0 | Хромово-калиевые квасцы | 0,10 | 94,90 |
10 | Прототип | AK-642 | 2,0 | - | - | Хромово-калиевые квасцы | 0,10 | 97,90 |
11 | Заявляемый | КМЦ-600 | 3,0 | Нефтенол ВВД | 2,0 | Алюмокалиевые квасцы | 0,20 | 94,80 |
12 | Прототип | КМЦ-600 | 3,0 | - | - | Алюмокалиевые квасцы | 0,20 | 96,80 |
13 | Заявляемый | Alkoflood 254 S | 5,0 | МЛ-81Б | 4,0 | Ацетат алюминия | 0,30 | 90,70 |
14 | Прототип | Alkoflood 254 S | 5,0 | - | - | Ацетат алюминия | 0,30 | 94,70 |
15 | Заявляемый | AK-631 | 6,0 | Неонол-12 | 1,0 | сульфат алюминия | 0,35 | 92,65 |
16 | Прототип | AK-631 | 6,0 | - | - | сульфат алюминия | 0,35 | 93,65 |
17 | Заявляемый | ПМАК | 3,0 | МЛ-80 БС | 2,0 | Бихромат натрия | 0,10 | 94,90 |
18 | Заявляемый | ПВС | 2,0 | МЛ-супер | 1,0 | Хромово-калиевые квасцы | 0,20 | 96,80 |
19 | Заявляемый | ПС | 2,0 | Нефтенол Н | 3,0 | Ацетат хрома | 0,10 | 94,90 |
20 | Заявляемый | ОЭЦ | 3,0 | Нефтенол 001 М | 1,0 | Бихромат натрия | 0,05 | 95,95 |
Таблица 3 | |||||
Результаты фильтрации композиций по заявляемому способу и прототипу с целью понижения проницаемости водонасыщенных коллекторов | |||||
№ п/п | Способ | Проницаемость, мкм2 | Понижение проницаемости, K1/K2, % | ||
1 оторочка Заявляемый, Табл. 1.1 синт. 1-20, Прототип. Табл. 1.2 синт. 1-7 | 2 оторочка (см. Табл.2 синт. п/п 1-20) | до обработки K1 | после обработки K2 | ||
1 | 2 | 3 | 4 | 5 | 6 |
1 | Заявляемый 1 | 1 | 10,1 | 9,53 | 106 |
2 | Заявляемый 2 | 2 | 10,7 | 8,10 | 132 |
3 | Заявляемый 3 | 3 | 10,3 | 3,45 | 298 |
4 | Прототип 1 | 4 | 11,0 | 7,33 | 150 |
5 | Заявляемый 4 | 5 | 11,5 | 3,23 | 356 |
6 | Прототип 2 | 6 | 11,8 | 6,86 | 172 |
7 | Заявляемый 7 | 7 | 12,2 | 3,96 | 308 |
8 | Прототип 3 | 8 | 12,6 | 7,63 | 165 |
9 | Заявляемый 15 | 9 | 11,9 | 3,28 | 363 |
10 | Прототип 7 | 10 | 10,8 | 7,20 | 150 |
11 | Заявляемый 5 | 11 | 12,0 | 3,61 | 332 |
12 | Прототип 4 | 12 | 12,5 | 7,71 | 162 |
13 | Заявляемый 8 | 13 | 13,6 | 3,62 | 375 |
14 | Прототип 6 | 14 | 13,1 | 7,79 | 168 |
15 | Заявляемый 9 | 15 | 13,8 | 3,61 | 382 |
16 | Прототип 5 | 16 | 13,3 | 7,60 | 175 |
17 | Заявляемый 10 | 17 | 12,8 | 3,76 | 340 |
18 | Заявляемый 11 | 18 | 12,3 | 3,75 | 328 |
19 | Заявляемый 12 | 19 | 11,6 | 3,59 | 323 |
20 | Заявляемый 13 | 20 | 12,7 | 3,83 | 331 |
Таблица 4 | |||||
Результаты фильтрации композиций по заявляемому способу и прототипу с целью повышения проницаемости коллектора, насыщенного нефтью с остаточной водонасыщенностью 23-38% | |||||
№ п/п | Способ | Проницаемость, мкм2 | Повышение проницаемости, K2/K1, % | ||
1 оторочка Заявляемый. Табл. 1.1, синт. 1-20, Прототип. Табл. 1.2 синт. 1-7 | 2 оторочка (см.Табл.2 синт. п/п 1-20) | до обработки K1 | после обработки K2 | ||
1 | 2 | 3 | 4 | 5 | 6 |
1 | Заявляемый 1 | 1 | 1,65 | 1,69 | 103 |
2 | Заявляемый 2 | 2 | 1,88 | 2,08 | 111 |
3 | Заявляемый 3 | 3 | 2,05 | 3,89 | 190 |
4 | Прототип 1 | 4 | 2,10 | 2,41 | 115 |
5 | Заявляемый 4 | 5 | 2,50 | 5,90 | 236 |
6 | Прототип 2 | 6 | 2,30 | 2,71 | 118 |
7 | Заявляемый 7 | 7 | 2,72 | 7,15 | 263 |
8 | Прототип 3 | 8 | 2,80 | 3,52 | 126 |
9 | Заявляемый 15 | 9 | 2,95 | 8,11 | 275 |
10 | Прототип 7 | 10 | 3,01 | 3,49 | 116 |
11 | Заявляемый 5 | 11 | 3,12 | 8,82 | 283 |
12 | Прототип 4 | 12 | 3,09 | 3,70 | 120 |
13 | Заявляемый 8 | 13 | 3,50 | 10,22 | 292 |
14 | Прототип 6 | 14 | 13,1 | 7,79 | 168 |
15 | Заявляемый 9 | 15 | 3,42 | 4,37 | 128 |
16 | Прототип 5 | 16 | 3,20 | 8,80 | 275 |
17 | Заявляемый 10 | 17 | 3,15 | 4,12 | 131 |
18 | Заявляемый 11 | 18 | 2,88 | 6,76 | 235 |
19 | Заявляемый 12 | 19 | 2,70 | 6,69 | 248 |
20 | Заявляемый 13 | 20 | 3,32 | 8,79 | 265 |
Таблица 5 | |||||||
Нефтевытесняющая способность композиций по заявляемому способу и прототипу | |||||||
№ п/п | Способ | Начальная нефтенасыщенность, % | Коэффициент нефтевытеснения нефти | ||||
1 оторочка Заявляемый. Табл. 1,1, синт. 1-20, Прототип. Табл. 1.2, синт. 1-7 | 2 оторочка (см.Табл.2 синт. п/п 1-20) | по воде | прирост | общий | |||
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
1 | Заявляемый | 1 | 1 | 65,1 | 0,63 | 0,18 | 0,81 |
2 | Заявляемый | 2 | 2 | 64,5 | 0,64 | 0,22 | 0,86 |
3 | Заявляемый | 3 | 3 | 64,8 | 0,64 | 0,25 | 0,89 |
4 | Прототип | 1 | 4 | 64,0 | 0,63 | 0,20 | 0,83 |
5 | Заявляемый | 4 | 5 | 65,3 | 0,64 | 0,30 | 0,94 |
6 | Прототип | 2 | 6 | 66,7 | 0,63 | 0,21 | 0,84 |
7 | Заявляемый | 7 | 7 | 65,2 | 0,64 | 0,29 | 0,93 |
8 | Прототип | 3 | 8 | 65,8 | 0,63 | 0,20 | 0,83 |
9 | Заявляемый | 15 | 9 | 67,5 | 0,65 | 0,30 | 0,95 |
10 | Прототип | 7 | 10 | 68,6 | 0,63 | 0,21 | 0,84 |
11 | Заявляемый | 5 | 11 | 69,5 | 0,64 | 0,30 | 0,94 |
12 | Прототип | 4 | 12 | 69,0 | 0,63 | 0,20 | 0,83 |
13 | Заявляемый | 8 | 13 | 65,3 | 0,63 | 0,27 | 0,90 |
14 | Прототип | 6 | 14 | 70,8 | 0,62 | 0,22 | 0,84 |
15 | Заявляемый | 9 | 15 | 70,6 | 0,63 | 0,27 | 0,90 |
16 | Прототип | 5 | 16 | 73,2 | 0,62 | 0,21 | 0,83 |
17 | Заявляемый | 10 | 17 | 71,8 | 0,64 | 0,28 | 0,92 |
18 | Заявляемый | 11 | 18 | 72,3 | 0,65 | 0,29 | 0,94 |
19 | Заявляемый | 12 | 19 | 72,6 | 0,63 | 0,28 | 0,91 |
20 | Заявляемый | 13 | 20 | 77,0 | 0,64 | 0,28 | 0,92 |
Класс E21B43/22 с применением химикалий или бактерий