способ деструкции новообразований и патологически измененных тканей организма
Классы МПК: | A61N5/04 генераторы токов ближнего поля |
Автор(ы): | Тома Александр Ильич (RU), Ёлкин Владимир Александрович (RU), Норкин Игорь Алексеевич (RU), Вилков Дмитрий Юрьевич (RU), Тома Валерий Ильич (RU) |
Патентообладатель(и): | Тома Александр Ильич (RU), Вилков Дмитрий Юрьевич (RU) |
Приоритеты: |
подача заявки:
2009-10-30 публикация патента:
27.10.2010 |
Изобретение относится к медицине и предназначено для деструкции новообразований и патологически измененных тканей организма. Осуществляют доступ проколом к зоне намеченной манипуляции. Обеспечивают проникновение СВЧ-излучателя внутрь новообразований и патологически измененных тканей организма. Контролируют точность локализации излучателя с помощью средств визуализации и температурную динамику облучаемой ткани, создаваемой в процессе СВЧ-облучения. Осуществляют СВЧ-воздействие, не превышая температурного предела 43-48°С, с мощностью излучения порядка 5-18 Вт, с рабочей частотой в пределах 1,5-10 ГГц, длительностью воздействия порядка 3-30 секунд до достижения результата деструкции новообразований и патологически измененных тканей организма. Способ позволяет избежать повреждения прилегающих непораженных тканей в процессе лечения. 4 з.п. ф-лы.
Формула изобретения
1. Способ деструкции новообразований и патологически измененных тканей организма, характеризующийся тем, что осуществляют доступ проколом к зоне намеченной манипуляции, обеспечивают проникновение СВЧ-излучателя внутрь новообразований и патологически измененных тканей организма, контролируют точность локализации излучателя с помощью средств визуализации и температурную динамику облучаемой ткани, создаваемой в процессе СВЧ-облучения, осуществляют СВЧ-воздействие, не превышая температурного предела 43-48°С, с мощностью излучения порядка 5-18 Вт, с рабочей частотой в пределах 1,5-10 ГГц, длительностью воздействия порядка 3-30 с до достижения результата деструкции новообразований и патологически измененных тканей организма.
2. Способ по п.1, характеризующийся тем, что при деструкции злокачественных новообразований обеспечивают СВЧ-воздействие в импульсном режиме со скважностью периодических импульсных сигналов порядка 5-10 и временем воздействия от 15 до 30 с при мощности от 10 до 18 Вт.
3. Способ по п.1, характеризующийся тем, что при обработке патологически измененных мягких тканей обеспечивают температурные пределы порядка 43-45°С.
4. Способ по п.1, характеризующийся тем, что предварительно с учетом размеров, формы и видов структуры новообразования выбирают два идентичных - пробный и рабочий экземпляра СВЧ-излучателя с соответствующими патологии геометрическими размерами и ее форме, затем моделируют в эксперименте в кварцевой кювете, заполненной термоконтрастной жидкостью, пробным экземпляром СВЧ-излучателя планируемый режим СВЧ-воздействия, отрабатывая параметры оптимального режима в заданных диапазонах температур, рабочей мощности, длительности воздействия, затем деструкцию патологии осуществляют стерильно подготовленным вторым - рабочим экземпляром СВЧ-излучателя в оптимальном режиме.
5. Способ по п.1, характеризующийся тем, что температурную динамику облучаемой ткани контролируют ИК-термографом.
Описание изобретения к патенту
Изобретение относится к медицине и может быть использовано для разрушения патологически измененных тканей тела человека в виде новообразований и других патологий.
Известен «Способ малоинвазивного хирургического лечения опухолей позвонков» [патент RU на изобретение № 2353315], включающий деструкцию опухоли и вертебропластику костным цементом. Одну иглу вводят в оставшиеся костные структуры позвонка, другую иглу вводят в центр опухоли. Проводят вапоризацию опухоли лазерным излучением мощностью до 10 Вт. Разовая экспозиция составляет до 30 сек, суммарная экспозиция воздействия лазерным излучением составляет 4-5 мин.
Недостатком данного способа является то, что для достижения деструкции всего объема опухоли необходимо многократно перемещать иглу с лазерным волноводом, что повышает травматичность процедуры. Кроме того, способ предназначен только для опухолей, расположенных в телах позвонков, и не может использоваться при деструкции опухоли другой локализации.
Известен также «Способ лечения костных кист» [патент RU на изобретение № 2230510]. В данном способе осуществляют воздействие на костную кисту сверхвысокочастотным электромагнитным полем в режиме деструкции при частоте 10-1000 МГц, температуре 41-45°C в течение 1-10 мин.
Недостатком данного способа является то, что для его осуществления требуется открытый доступ через разрез, а не пункционно к очагу поражения костной ткани. Кроме того, он предназначен для лечения только костных кист и не может использоваться при деструкции других патологически измененных тканей организма.
Наиболее близким аналогом является способ микроволновой диатермокоагуляции биоткани, описанный в патенте RU на изобретение № 2318465. Способ включает введение в биоткань излучателя и последующие одновременные микроволновый нагрев и введение в биоткань раствора 20-25% NaCl в объеме, равном объему разрушаемой биоткани. Нагрев осуществляют при выходной мощности 20-30 Вт.
В наиболее близком аналоге частота фиксирована - 2,45 ГГц, возможность выбора или подбора рабочей частоты исключена, что не отличает способ-прототип от других существующих способов по возможности исключения перегрева тканей. Введение физраствора в способе осложняет его, может привести к дополнительной травматизации за счет непредсказуемых путей диффундирования перегретой СВЧ-воздействием жидкости в близлежащие ткани. Проводимость раствора 20-25% NaCl почти на порядок больше, чем у тканей тела пациента, что приводит к отбору большей части СВЧ-мощности этой жидкостью - раствора 20-25% NaCl, а не обрабатываемыми тканями.
Задачей заявляемого изобретения является достижение деструкции патологических тканей с заданным объемом обработки без превышения всех режимных параметров: температурных, размерных и временных, приводящих к повреждению прилегающих непораженных тканей.
Сущность заявляемого изобретения характеризуется тем, что в способе деструкции новообразований и патологически измененных тканей организма осуществляют доступ проколом к зоне намеченной манипуляции, обеспечивают проникновение СВЧ-излучателя внутрь новообразования и патологически измененных тканей организма, контролируют точность локализации излучателя с помощью средств визуализации и температурную динамику облучаемой ткани, создаваемой в процессе СВЧ-облучения, осуществляют СВЧ-воздействие, не превышая температурного предела 43-48°C, с мощностью излучения порядка 5-18 Вт, с рабочей частотой в пределах 1,5-10 ГГц, длительностью воздействия порядка 3-30 секунд до достижения результата деструкции новообразования и патологически измененных тканей организма.
Заявляется также способ с вышеописанными признаками, в котором при деструкции злокачественных новообразований обеспечивают СВЧ-воздействие в импульсном режиме со скважностью периодических импульсных сигналов порядка 5-10 и временем воздействия от 15 до 30 сек при мощности от 10 до 18 Вт.
Кроме того, заявляется также способ с вышеописанными признаками, в котором при обработке патологически измененных мягких тканей обеспечивают температурные пределы порядка 43-45°C.
Заявляется также способ с вышеописанными признаками, в котором предварительно с учетом размеров, формы и видов структуры новообразования выбирают два идентичных - пробный и рабочий, экземпляра СВЧ-излучателя с соответствующими патологии геометрическими размерами и ее форме, затем моделируют в эксперименте в кварцевой кювете, заполненной термоконтрастной жидкостью, пробным экземпляром СВЧ-излучателя планируемый режим СВЧ-воздействия, отрабатывая параметры оптимального режима в заданных диапазонах температур, рабочей мощности, длительности воздействия, затем деструкцию патологии пациенту осуществляют стерильно подготовленным вторым - рабочим экземпляром СВЧ-излучателя в оптимальном режиме.
Заявляется также способ с вышеописанными признаками, в котором температурную динамику облучаемой ткани контролируют ИК-термографом.
Технический результат заявляемого изобретения заключается в возможности варьирования рабочей частотой СВЧ-излучения. Так для опухолей большего объема выбирают частоту воздействия, близкую к 1,5 ГГц, для маленьких опухолей подбирают частоты другой стороны диапазона: 7, 8, 9, 10 ГГц.
Техническим преимуществом заявляемого способа является исключение режимов воздействия, приводящих к внутритканевой абляции, за счет одновременного контроля во время воздействия СВЧ-излучения в заданной зоне обработки. Контроль температурной динамики осуществляют с самого начала воздействия, начиная с 0,1 секунды (за счет ИК-термографа) процесса деструкции. В случае достижения предельных значений температуры внутри обрабатываемой зоны врач сам или с помощью автоматического блока, включающего модуль автоматического ограничения мощности СВЧ-генератора, добивается возвращения работы к оптимальному режиму обработки. Длительность СВЧ-воздействия в 20-30 мин в наиболее близком аналоге в сравнении с заявляемой в новом способе 3-30 сек свидетельствует в пользу нового способа. Для наглядности уместно сравнение с бытовой СВЧ-печью, работающей именно на частоте 2,45 ГГц, заявленной в наиболее близком способе - за 20-30 мин прогрева жидкость (стакан воды) дойдет до кипения. Поэтому 30 минутное СВЧ-воздействие на больную ткань не гарантировано от превышения режима воздействия. Минимально возможное время СВЧ-облучения в заявляемом способе - 3 сек достаточно для достижения деструкции для большего числа патологий без нежелательных осложнений, а именно распространения температуры в прилежащие зоны вокруг обрабатываемой опухоли или ткани, что характерно для большинства существующих способов излучения с целью деструкции. Достигнутый компромисс между мощностью, видом (СВЧ) воздействия, с одной стороны, и временем воздействия, с другой стороны, позволил получить названный выше эффект, а именно гибель опухоли без поражения близлежащих тканей.
Заявляемый способ осуществляют следующим образом.
Во время предоперационной подготовки способа осуществляют за пределами организма пациента - в кювете тест-контроль готовности оборудования. Для чего вынимают из стерильной упаковки излучатель СВЧ используемого СВЧ-оборудования. Соединяют с СВЧ-генератором используемого оборудования. Включают его на заданное время обработки патологической ткани. Контролируют с помощью ИК-термографа температуру нагрева воды в кювете. При условии получения величин температур, соответствующих планируемым в процессе предстоящей обработки патологической ткани, считают работу аппаратуры, подготовленной для предстоящей лечебной хирургической манипуляции. Названный тест-контроль занимает 2-3 минуты времени.
Размещают пациента на операционном столе в положении, наиболее удобном для проведения планируемых хирургических манипуляций. Определяют при помощи УЗИ, рентгена или компьютерного томографа точную локализацию, размер и форму патологической ткани, проверяют ранее полученные данные. С учетом всей полученной информации выбирают наиболее безопасное место планируемого прокола и введения троакара с мандреном.
Затем приступают к хирургической манипуляции - разрушению новообразований или обработки патологической ткани. Для этого осуществляют под местной анестезией под контролем рентгеновской и/или УЗИ аппаратуры деликатное введение троакара с мандреном в центральную область новообразования или патологической ткани. Вынимают из троакара мандрен. Вводят на его место излучатель неразъемного СВЧ-блока через троакар так, чтобы излучатель - монополь-вибраторная антенна располагалась в центре новообразования или патологически измененной ткани организма. Контролируют при помощи рентгеновской и/или ультразвуковой аппаратуры правильность расположения монополь-вибраторной антенны. Приступают к процедуре деструкции новообразования и/или патологически измененной ткани, обеспечивая их СВЧ-обработку в заявленных режимах: температурные пределы 43-48°C, мощность излучения порядка 5-18 Вт, рабочая частота в пределах 1,5-10 ГГц, длительность воздействия порядка 3-30 секунд. При этом в процессе всей процедуры контролируют точность локализации излучателя с помощью средств визуализации - рентгена, компьютерной томографии, ультразвуковой аппаратуры. Одновременно контролируют и температурную динамику облучаемой ткани ИК-термографом, причем с самого начала процесса обработки до конца, не допуская ее выхода за пределы установленного температурного режима.
Так при обработке злокачественных новообразований обеспечивают СВЧ-воздействие в импульсном режиме при мощности от 10 до 18 Вт, времени воздействия от 15 до 30 сек и со скважностью периодических импульсных сигналов порядка 5-10.
Импульсный режим позволяет при сохранении уровня поглощенной СВЧ-энергии задавать значительно большие импульсные мощности СВЧ-генератора. Скважность 5 означает, что длительность импульса меньше периода их повторения в 5 раз или соответственно в 10 раз при скважности 10.
При обработке патологически измененных мягких тканей обеспечивают более низкие температурные пределы порядка 43-45°C, не допуская более высоких температур, в отличие от температур, используемых при обработке костно-хрящевых тканей.
В особо сложных случаях локализации опухоли или патологически измененной ткани, а также их сложной конфигурации или неопределенности в дифференциации по объему обеспечивают моделирование процесса воздействия в качестве его подготовки за пределами тела пациента. Для этого предварительно с учетом размеров, формы и видов структуры новообразования выбирают из наборов разных размеров два идентичных - пробный и рабочий, экземпляра СВЧ-излучателя с соответствующими патологии геометрическими размерами и ее форме. Затем моделируют, подобно экспериментальному выбору, в кварцевой кювете, заполненной термоконтрастной жидкостью, пробным экземпляром СВЧ-излучателя планируемый режим СВЧ-воздействия, отрабатывая параметры оптимального режима в заданных диапазонах температур, рабочей мощности, длительности воздействия. Затем осуществляют деструкцию патологии стерильно подготовленным вторым - рабочим экземпляром СВЧ-излучателя в выбранном оптимальном режиме.
Пример.
Больной Е., 45 лет, находился на лечении в отделении нейрохирургии Саратовского НИИТО с диагнозом: «Рак предстательной железы. Состояние после билатеральной орхоэктомии. Метастазирование в тело ThIX позвонка с проникновением опухоли в позвоночный канал с незначительным сдавлением дурального мешка. Нижний парапарез». Диагноз был подтвержден при компьютерно-томографическом и магниторезонансном исследованиях.
Тактика лечения больного была обсуждена на консилиуме нейрохирургов и онкологов. Учитывая полученные данные обследования, больному было решено на фоне специфического лечения основного заболевания - рака предстательной железы - выполнить биопсию тела ThIX позвонка с проведением СВЧ-деструкции опухолевой ткани. Больному было выполнено лечение по предлагаемому способу. По данным КТ и МРТ исследований был проведен расчет объема опухолевого образования в теле ThIX позвонка, который составил 36 см3. Соответственно этому объему были выбраны параметры СВЧ-воздействия - время 28 сек, температура 48°C, мощность 16 Вт. Под местной анестезией в положении больного на животе под рентгеноконтролем произведено перкутанное левосторонне транспедикулярное введение троакара с мандреном в тело ThIX позвонка до его центра. После удаления мандрена специальной биопсийной иглой взята на гистоморфологическое исследование опухолевая ткань. Выполнена экспресс-диагностика опухолевого поражения, подтверждена злокачественность опухоли. Затем после проверки работы СВЧ-устройства через троакар к центру тела позвонка введен СВЧ-излучатель - монополь-вибраторная антенна неразъемного СВЧ-блока. Проведен рентгеноконтроль правильности ее положения. После чего согласно заявляемому способу произведена СВЧ-деструкция опухолевой ткани в соответствии с расчетными параметрами. По окончании процедуры произведено последовательное удаление СВЧ-излучателя и троакара. В течение первых суток после операции был отмечен практически полный регресс неврологической симптоматики, что явилось косвенным признаком эффективности лечения. При контрольном исследовании через 2 года рецидива опухоли в теле ThIX позвонка не было.
Класс A61N5/04 генераторы токов ближнего поля