устройство для осуществления способа преобразования центробежной силы в силу, создающую направленную тягу
Классы МПК: | B64C29/04 с реактивными двигателями |
Автор(ы): | Дундуков Константин Валентинович (RU), Дундуков Кирилл Константинович (RU), Дундуков Валентин Константинович (RU), Дундукова Татьяна Вячеславовна (RU) |
Патентообладатель(и): | Дундуков Константин Валентинович (RU) |
Приоритеты: |
подача заявки:
2009-05-08 публикация патента:
27.10.2010 |
Изобретение относится к транспортным средствам, например летательным аппаратам вертикального взлета и посадки, и касается технологии конструирования двигателей и движителей, применяемых на наземных, водных, воздушных, космических и других транспортных средствах. Устройство для осуществления способа преобразования центробежной силы в силу, создающую направленную тягу, содержит один рабочий диск, заполненный жидкостью, в центральной части которого имеется отверстие. Вдоль внешней стенки диска расположены вертикальные трубки для выливания жидкости при его вращении, а двигатель с приводом вращения диска установлен с возможностью отрыва диска от двигателя. Достигается повышение эффективности использования центробежной силы. 1 з.п. ф-лы, 1 ил.
Формула изобретения
1. Устройство для осуществления способа преобразования центробежной силы в силу, создающую направленную тягу, содержащее один рабочий диск, заполненный жидкостью, в центральной части которого имеется отверстие, вдоль внешней стенки диска расположены вертикальные трубки для выливания жидкости при его вращении, а двигатель с приводом вращения диска установлен с возможностью отрыва диска от двигателя.
2. Устройство по п.1, отличающееся тем, что оно оснащено собственным двигателем и дополнительным диском, вращающимся в противоположную сторону для компенсации обратного вращения двигателя.
Описание изобретения к патенту
Изобретение относится к транспортным средствам, например летательным аппаратам с вертикальным взлетом и посадкой, и касается технологии конструирования двигателей и движителей, применяемых на наземных, водных, воздушных, космических и др. транспортных средствах.
Известен способ создания силы тяги, заключающийся в том, что камеру, имеющую один выход в окружающую среду, заполняют текучей средой под давлением и используют струйную завесу из текучей среды, которую формируют соплом, подключенным к выходу из камеры, на вход в которое текучую среду подают от ее источника, применяя рециркуляцию текучей среды струйной завесы, Патент RU (11) 2104188. Известен способ создания реактивной тяги ракетного двигателя, состоящий в том, что камеру двигателя, сообщенную с соплом, заполняют под давлением водой при температуре, превосходящей температуру кипения воды, при нормальном атмосферном давлении, после заполнения камеры воду подают в сопловую часть камеры для последующего истечения рабочего тела из сопла. Заявка RU (11) 96101208. Известен способ получения тяги винтовым движителем транспортного средства, заключающийся в том, что наклонными поверхностями лопастей винта создают основной закрученный вокруг оси вращения поток массы воды или воздуха и смещают его вдоль оси вращения, обеспечивая перемещение транспортного средства в противоположном направлении от смещения основного потока, отличающийся тем, что у той части массы основного закрученного потока, которая смещается радиально от оси вращения за счет центробежной силы, изменяют направление ее движения на угол от 45 до 135° и совмещают с направлением перемещения основного потока вдоль оси вращения винта. Заявка RU (11) 2002105078.
Прототипом предлагаемого способа преобразования центробежной силы в силу, создающую направленную тягу, выбран способ по заявке RU (11) 2002105078. Однако способ по заявке RU (11) 2002105078 предполагает нерациональное использование кинетической энергии воды или воздуха и значительные затраты энергии на преодоление вязкости при работе в воде.
Задачей данного изобретения является повышение эффективности использования центробежной силы. Цель изобретения достигается за счет использования центробежной силы, возникающей в твердом теле при вращении его в неплотной среде, например в атмосфере, при этом воздействие центробежной силы происходит на более плотную среду жидкость, например воду. Достигается это тем, что внутренняя структура твердого вращающегося тела позволяет воде свободно перемещаться под действием центробежной силы в направлении от оси вращения к внешним сторонам этого тела. На внешнюю сторону тела с внутренней стороны начинает действовать давление воды. Строение твердого вращающегося тела устроено так, что имеется возможность замещения освобождаемого объема атмосферным воздухом или другими газами или водой. Вода, создающая давление на внутреннюю сторону внешних стенок тела, имеет возможность выливаться из него. Направление выливающейся воды за счет направляющих (например, полых трубок) направлено вдоль оси вращения или под углом к ней.
1. Вращение твердого тела в атмосфере при равных затратах энергии дает возможность достигать большую угловую скорость, чем при вращении того же тела в воде, так как плотность воздуха в атмосфере значительно меньше плотности воды.
2. При значительных угловых скоростях вращения достигается большая величина давления на внешние стенки вращаемого тела.
3. Применение воды в качестве рабочего тела, на которое действует центробежная сила и создается избыточное давление, дает возможность достигать большего значения момента импульса при вытекании воды из вращающегося тела, чем при использовании воздуха, так как плотность воды значительно больше плотности воздуха.
Сущность способа преобразования центробежной силы в силу тяги заключается в воздействии на воду, находящуюся внутри твердого полого тела, центробежной силы, возникающей при вращении этого твердого тела вместе с водой в окружающей среде, имеющей значительно меньшую плотность, чем вода, например в атмосфере (воздухе). При этом вращение твердого тела в атмосфере может осуществляться на значительно больших оборотах и при значительно меньших энергетических затратах, чем в воде. Как следствие, большая возникающая центробежная сила, соответствующая произведению квадрата угловой скорости и радиуса описываемой окружности, будет действовать на воду, находящуюся внутри твердого тела и вращающуюся вместе с ним в плоскости, перпендикулярной оси вращения. При физическом ограничении возможности движения воды по окружности (за счет внутренней структуры вращающегося твердого тела, например внутренняя структура тела представляет собой сетчатые перегородки из твердого вещества (металла), которые расположены в радиальном направлении и по окружности) и почти не допускают движения воды во вращаемом твердом теле по окружности, вода под действием центробежной силы распределяется вдоль внутренней стороны внешней стенки тела по окружности. При этом сила давления воды на внутреннюю сторону внешней стенки тела по закону Паскаля (давление в жидкости или газе распределяется равномерно во все направления) в каждой отдельно взятой точке воды будет одинаковой в численном выражении в любом направлении. Силы, действующие в диаметральной плоскости, уравновешиваются упругостью внешней стенки. Силы давления, действующие вдоль оси вращения, уравновешиваются силами упругости верхней и нижней сторон вращающегося тела. В нижней части вращающегося тела имеются отверстия (возможно, для увеличения тяговой силы к отверстиям внутри тела параллельно или под углом к оси вращения присоединены трубки, один конец которых выходит в отверстие, а второй внутри тела открыт для вливания воды). На воду при избыточном давлении действует сила, создающая ускорение, за время движения по заданной трубке (трубкам расположенным симметрично относительно оси вращения) вода достигнет определенной скорости, равной произведению ускорения на время. При вытекании за пределы тела вода с полученным ускорением и приобретенной скоростью покинет вращающееся твердое тело, а твердое вращающееся тело по закону сохранения импульсов получит ускорение.
Предлагаемый способ рассмотрен на примере создания силы тяги, необходимой для подъема вертикально взлетающего аппарата, изображенном на чертеже, где этот аппарат имеет один рабочий диск 1, в центральной части диска имеется отверстие 5 для попадания воздуха. Вдоль внешней стенки диска внутри его расположены вертикальные трубки 2. Двигатель 4 показан с приводом вращения 3 диска и возможностью его отрыва от двигателя. Описываемый способ реализуется следующим образом. Приводом двигателя диск приводят в движение до расчетной угловой скорости. Вода начинает вращаться вместе с диском и за счет центробежной силы создает избыточное давление на его стенки. Под действием избыточного давления вода в трубках 2 приобретает ускорение и скорость, направленную вдоль оси вращения к нижним краям диска. Вытекающая из отверстий диска вода имеет импульс, равный произведению ее массы на скорость. По закону сохранения импульсов вертикально взлетающий аппарат также получит импульс, направленный в противоположную сторону. При этом отношение скоростей вытекания воды и вертикально взлетающего аппарата будут обратно пропорциональны их массам в каждый момент времени. Результатом описываемого процесса является реактивное движение, подобное движению ракеты, выбрасывающей реактивную струю сгораемого топлива. Отличие предлагаемого способа заключается в использовании вместо реактивной струи сгорающего топлива ракеты другого рабочего тела, а именно воды или другой жидкости. Применение воды в качестве рабочего реактивного тела позволяет за счет присущих ей свойств - небольшого коэффициента сжатия, жидкого состояния, плотности, равной примерно 1 гр/см3, передачи давления равномерно во все стороны - получить непрерывное ускорение. Еще одно отличие предлагаемого способа заключается в создании избыточного давления, разгоняющего рабочее реактивное тело до скорости, способной дать необходимый импульс и соответственно силу тяги за счет использования центробежной силы, возникающей при вращении тел.
Рассмотренный пример может быть оснащен собственным двигателем и дополнительным диском, вращающимся в противоположную сторону для компенсации обратного вращения двигателя, а может быть использован (подобно планеру) как описано выше с двигателем (например, с электродвигателем), создающим вращение, но не закрепленным к диску. При этом диск, вращающийся с большой массой воды, будет иметь достаточный запас энергии для подъема его и посадки, а за счет гироскопических свойств направление оси вращения будет неизменным.
Приблизительное математическое описание способа преобразования центробежной силы в силу тяги может быть описано формулой Циолковского:
Она позволяет определить скорость при полете в идеальных условиях, когда отсутствуют внешние силы P=O, для любого момента
времени при известном секундном расходе воды (
где
- секундный расход воды на i-ом шаге), mк - конечная масса, m0 - начальная масса.
Для подробного математического описания способа необходимо учитывать силы трения, сопротивления воздуха, коэффициенты расширения для различных физических тел и т.д.
При вращении диска большой массы на характер движения будут влиять гироскопические свойства быстро вращающегося тела, прецессия вращающегося тяжелого твердого тела. Основной количественной характеристикой вращающегося твердого тела является момент количества движения или момент импульса:
H=CW,
где С - момент инерции относительно оси собственного вращения,
W - составляющая вектора абсолютной угловой скорости, направленная по оси собственного вращения. Прецессия, описываемая векторным уравнением wiH=M.
Здесь w - вектор угловой скорости прецессии, Н - вектор собственного кинетического момента, М - ортогональная к Н составляющая вектора момента внешних сил, приложенных к вращающемуся твердому телу. Кроме того, влияние будет иметь характер течения воды в каналах (трубках) вращающегося твердого тела, который можно установить, пользуясь безразмерной величиной - числом Рейнольдса: Re= ·Vcp·r/µ, где - плотность жидкости, Vсp - средняя (по сечению канала) скорость потока, µ - коэффициент вязкости жидкости, r - характерный геометрический размер, в частности радиус сечения канала. Число Рейнольдса характеризует отношение сил инерции и сил вязкости. Текущую жидкость можно рассматривать как невязкую, если число Рейнольдса для такого течения Re>1.
Класс B64C29/04 с реактивными двигателями