система контроля положения и управления движением мини-щита для строительства мини-тоннелей
Классы МПК: | E21D9/093 управление проходческим щитом E21C35/24 дистанционное управление работой врубовых машин или горных комбайнов |
Автор(ы): | Глебов Николай Алексеевич (RU), Ваколюк Александр Ярославич (RU), Надтока Владимир Иванович (RU), Надтока Иван Иванович (RU), Притчин Сергей Борисович (RU), Недлин Дмитрий Михайлович (RU), Бреславец Владимир Павлович (RU), Безъязычный Дмитрий Владимирович (RU) |
Патентообладатель(и): | Общество с ограниченной ответственностью научно-производственное предприятие "ВНИКО" (RU) |
Приоритеты: |
подача заявки:
2009-08-03 публикация патента:
10.12.2010 |
Изобретение касается автоматического и автоматизированного управления направленным движением тоннелепроходческих машин и щитов. Техническим результатом является определение пространственных координат минищита с высокой точностью и позволяющей осуществлять оперативную связь с аппаратурой, установленной на минищите посредством лазерного луча, придание этой системе помехозащищенности и повышенного быстродействия. Система состоит из оптического задатчика направления, фотоприемного блока, и в нее дополнительно введены: блок управления оптическим задатчиком, блок согласования сигналов, микроконтроллер, дешифратор, модуль фонового опроса матрицы, шинные формирователи, блок формирования сигнала прерывания, коммутатор, электроприводы, блок контроля и управления электроприводами, блок управления оптическим передатчиком, оптический передатчик, фотоприемное устройство. Все эти элементы взаимосвязаны. 1 ил.
Формула изобретения
Система контроля положения и управления движением мини-щита для строительства мини-тоннелей, содержащая оптический задатчик направления, фотоприемник, отличающаяся тем, что она снабжена блоком управления оптическим задатчиком направления, вход которого подключен к первому выходу блока согласования сигналов, а выход - к оптическому задатчику направления, формирующему сфокусированный лазерный луч, поступающий на хвостовую и ножевую матрицы фотоприемного блока, а их выходы соединены с шинными формирователями, выходы которых соединены с микроконтроллером, также выходы хвостовой матрицы соединены с блоком формирования сигнала прерывания и коммутатором, выходы которых соединены с микроконтроллером, выходы микроконтроллера соединены с двумя дешифраторами, выход одного из которых соединен с ножевой матрицей, а выход другого - с модулем фонового опроса хвостовой матрицы, выход которого, в свою очередь, соединен с хвостовой матрицей, при этом другие выходы микроконтроллера соединены с блоком управления оптическим передатчиком, выход которого подключен к оптическому передатчику, формирующему сфокусированный лазерный луч в направлении, противоположном направлению движения мини-щита, и оптически соединенному с фотоприемным устройством, выход которого соединен со вторым входом блока согласования сигналов, а тот, в свою очередь, вторым выходом и первым входом - с электронно-вычислительным комплексом, при этом оптический передатчик кинематически соединен с валом электропривода поворота в вертикальной плоскости и валом электропривода поворота в горизонтальной плоскости, входы и контрольные выходы которых соединены с блоком контроля и управления электроприводами, который, в свою очередь, соединен с микроконтроллером, дополнительные входы и выходы микроконтроллера соединены с устройством управления механизмами мини-щита.
Описание изобретения к патенту
Изобретение касается автоматического и автоматизированного управления направленным движением тоннелепроходческих машин, щитов и т.п.
Известно устройство управления движением проходческого щита, содержащее оптический задатчик направления, модулятор, фотоприемный блок (А.С. № 310111 кл. G01C 7/00, 1969). Такое устройство громоздко, не имеет возможности осуществлять обмен информацией посредством лазерного луча.
Наиболее близким техническим решением по достижению цели является изобретение «Система управления движением горной машины» (А.С. № 682647, Кл. E21C 35/24, опуб. 30.08.1979 г. Бюллетень № 32), состоящая из оптического задатчика направления, фотоприемного блока, триппель-призмы, полупрозрачного зеркала, измерительного блока, блока передачи измеренного расстояния.
Однако эта система громоздка, имеет сложную структуру, не обеспечивает двусторонний обмен информацией посредством лазерного луча, для определения координат щита в пространстве используется сложная следящая система.
Перед авторами стояла задача создания системы контроля положения и управления движением минищита для строительства минитоннелей, обладающей уменьшенными габаритными размерами, использующей статическую систему для определения пространственных координат минищита с высокой точностью, а также возможностью осуществления оперативной связи с аппаратурой, установленной на минищите, посредством лазерного луча с высокой помехозащищенностью и повышенным быстродействием.
Эта задача решена тем, что помимо оптического задатчика направления и фотоприемного блока система имеет блок управления оптическим задатчиком направления, вход которого соединен с первым выходом блока согласования сигналов, а выход с оптическим задатчиком направления, формирующим сфокусированный лазерный луч, подаваемый на хвостовую и ножевую матрицы фотоприемного блока, расположенного на минищите. Выходы хвостовой и ножевой матриц соединены с шинными формирователями, кроме того, выходы хвостовой матрицы также соединены с блоком формирования сигнала прерывания и коммутатором. Выходы шинных формирователей, блока формирования сигнала прерывания и коммутатора соединены с входами микроконтроллера, а их дополнительные входы управления связаны с выходами микроконтроллера. Другие выходы микроконтроллера соединены с двумя дешифраторами, выходы одного из которых соединены с ножевой матрицей, а выходы другого - с модулем фонового опроса хвостовой матрицы, выход которого, в свою очередь, соединен с хвостовой матрицей. Другие выходы микроконтроллера соединены с блоком управления оптическим передатчиком, который своим выходом подключен к оптическому передатчику, формирующему сфокусированный лазерный луч в направлении, противоположном направлению движения минищита, и оптически соединенного с фотоприемным устройством, расположенным в исходной точке тоннеля. Выход фотоприемного устройства соединен со вторым входом блока согласования сигналов, а тот в свою очередь вторым выходом и первым входом с электронно-вычислительным комплексом. Также оптический передатчик, расположенный на минищите, кинематически соединен с валом электропривода поворота в вертикальной плоскости и валом электропривода поворота в горизонтальной плоскости, входы и контрольные выходы которых соединены с блоком контроля и управления электроприводами, который, в свою очередь, соединен с микроконтроллером. Дополнительные входы и выходы микроконтроллера соединены с устройством управления механизмами минищита.
Сущность изобретения состоит в том, что введение в систему управления блока управления оптическим задатчиком направления и блока согласования сигналов позволяет осуществить преобразование информации, поступающей от электронно-вычислительного комплекса в виде электрических сигналов, в информацию, закодированную в модулированном лазерном излучении оптического задатчика направления. Введение в систему микроконтроллера, дешифраторов, модуля фонового опроса хвостовой матрицы, шинных формирователей, блока формирования сигнала прерывания и коммутатора позволяет осуществлять определение координат засвеченных фотоэлементов хвостовой и ножевой матриц и минищита в пространстве, а также принимать и обрабатывать информацию, поступающую от оптического задатчика направления в виде модулированного лазерного излучения. Применение блока управления оптическим передатчиком и оптического передатчика позволяет осуществить преобразование информации, подлежащей передаче на электронно-вычислительный комплекс, из электрической формы в модулированное лазерное излучение, а обратное преобразование ее в электрическую форму осуществляется с помощью фотоприемного устройства и блока согласования сигналов. Применение электроприводов, блока контроля и управления электроприводами, а также информации о положении минищита, поступающей от микроконтроллера, позволяет стабилизировать положение оптического передатчика в одном положении. Электронно-вычислительный комплекс позволяет оператору контролировать процесс строительства минитоннеля, а также осуществлять оперативное управлении минищитом.
Сущность изобретения поясняется чертежом, на котором дана блочная схема системы контроля положения и управления движением минищита для строительства минитоннелей.
Система контроля положения и управления движением минищита для строительства минитоннелей состоит из электронно-вычислительного комплекса 1, к которому первым входом и вторым выходом подключен блок согласования сигналов 2. К первому выходу данного блока подключен блок управления 3 оптическим задатчиком 4 направления, а ко второму входу фотоприемное устройство 5. На минищите 6 установлена аппаратура, состоящая из фотоприемного блока 7, который включает в себя хвостовую 8 и ножевую 9 матрицы фотоэлементов, соединенные своими выходами с шинными формирователями 10, а те, в свою очередь, выходами и входами управления с микроконтроллером 11. Помимо этого выходы хвостовой матрицы 8 соединены с блоком формирования сигнала прерывания 12 и коммутатором 13, выходы и входы управления которых соединены с микроконтроллером 11. Также фотоприемный блок 7 включает в себя дешифраторы 14, подключенные своими входами к микроконтроллеру 11. Один из дешифраторов 14 выходами подключен к ножевой матрице 9, а второй - к модулю 15 фонового опроса хвостовой матрицы 8. Кроме фотоприемного блока 7 на минищите 6 установлен блок управления 16 оптическим передатчиком 17, электроприводы 18 и 19 поворота оптического передатчика 17 в вертикальной и горизонтальной плоскостях соответственно и кинематически соединенных с оптическим передатчиком 17. Электроприводы 18 и 19 своими входами и информационными выходами соединены с блоком контроля и управления 20 электроприводами. Также на минищите 6 установлено устройство 21 управления механизмами минищита 6, подключенное информационными входами и выходами к микроконтроллеру 11.
Работает вся система следующим образом. Перед началом процесса сооружения минитоннеля производится включение всей аппаратуры, входящей в систему контроля положения и управления движением минищита 6 для строительства минитоннелей. Блок управления 3 оптическим задатчиком 4 направления начинает вырабатывать сигналы, которые поступают на оптический задатчик 4 направления и приводят его в режим генерации постоянного лазерного излучения, направленного в сторону минищита 6. Генерируемый лазерный луч попадает на хвостовую 8 и ножевую 9 матрицы фотоприемного блока 7, тем самым засвечивая на них фоточувствительные элементы, объединенные системой горизонтальных (строки) и вертикальных (столбцы) информационных линий. Микроконтроллер 11 по циклу производит выработку сигналов управления, поступающих на дешифраторы 14, поочередно приводя их в действие. Дешифраторы 14 производят дешифрирование сигналов, поступающих от микроконтроллера 11, и подают их на горизонтальные (строки) информационные линии хвостовой 8 и ножевой 9 матриц. Через горизонтальные информационные линии матриц и засвеченные фоточувствительные элементы сигналы от дешифраторов 14 поступают на вертикальные (столбцы) информационные линии и далее на шинные формирователи 10, активируемые попарно с дешифраторами 14 и предназначенные для мультиплексирования выходных информационных линий хвостовой 8 и ножевой 9 матриц. С шинных формирователей 10 сигналы передаются на входы микроконтроллера 11 и обрабатываются в нем. Зная код (номер сканируемой строки), подаваемый на дешифраторы 14, и анализируя информацию, поступающую с шинных формирователей 10, на предмет появления активного сигнала на линиях, вычисляются координаты засвеченных фоточувствительных элементов и координаты положения минищита 6 в пространстве относительно проектной оси тоннеля. В случае ухода минищита 6 от проектной оси микроконтроллер 11 вырабатывает сигналы управления, которые поступают на устройство управления 21 механизмами минищита 6 для корректировки его пространственного положения. В таком режиме система работает как автоматическая, но иногда необходимо осуществлять дистанционное управление исполнительными механизмами минищита 6 или производить обмен информацией с аппаратурой, установленной на минищите 6. Для этого в системе предусмотрена возможность оперативного обмена информацией посредством лазерного луча. Оператор, находясь за пультом электронно-вычислительного комплекса 1, в диалоговом режиме осуществляет выбор тех или иных команд управления, которые должны привести к определенным событиям на минищите 6. Электронно-вычислительный комплекс 1 осуществляет выработку сигналов управления в соответствии с выбранными командами, которые поступают на блок согласования сигналов 2 для преобразования в стандартную цифровую форму и далее на блок управления 3 оптическим задатчиком 4 направления, который в соответствии с поступающими сигналами вырабатывает сигналы управления оптическим задатчиком 4 направления для генерирования им модулированного лазерного излучения. Как только модулированный луч попадает на хвостовую матрицу 8, блок формирования сигнала прерывания 12 вырабатывает сигнал прерывания, который переводит микроконтроллер 11 в режим подготовки к приему информации. Микроконтроллер 11 производит сканирование хвостовой матрицы 8 и определяет координаты засвеченных фоточувствительных элементов, далее он вырабатывает сигналы, настраивающие коммутатор 13 на прием и передачу информации с засвеченного фоточувствительного элемента на вход микроконтроллера 11. Далее он ожидает момент начала приема информации в последовательном формате и осуществляет ее прием. По завершении приема информации, микроконтроллер 11 производит ее декодирование и выработку тех или иных сигналов управления исполнительными механизмами минищита 6 и переходит в режим передачи служебной информации на пульт оператора. Для этого перед началом передачи служебной информации микроконтроллер 11 передает информацию об углах между осью минищита 6 и проектной осью тоннеля в вертикальной и горизонтальной плоскостях на блок контроля и управления 20 электроприводами 18 и 19 для осуществления, при необходимости, стабилизации положения оптического передатчика 17. После этого он осуществляет выработку сигналов по последовательному каналу связи. Данные сигналы поступают на блок управления 16 оптическим передатчиком 17 и далее на оптический передатчик 17 для генерации им модулированного лазерного излучения в сторону, противоположную направлению движения минищита 6. Модулированный луч попадает на фотоприемное устройство 5 и преобразуется в электрические импульсы, которые поступают на блок согласовании сигналов 2 и преобразуются в цифровую форму, приемлемую для электронно-вычислительного комплекса 1. Полученный нормализованный сигнал поступает в электронно-вычислительный комплекс 1, где и обрабатывается по определенному алгоритму. После завершения передачи информации на пульт оператора микроконтроллер 11 возвращается в режим сканирования хвостовой 8 и ножевой 9 матриц для определения пространственных координат минищита 6 и стабилизации его положения.
Для корректного срабатывания блока формирования сигнала прерывания 12 в систему введен блок 15 фонового опроса хвостовой матрицы 8, позволяющий отреагировать на появление модулированного луча вне зависимости от того, какую из матриц хвостовую 8 или ножевую 9 в данный момент времени сканирует микроконтроллер 11.
Во время движения минищита 6 может происходить отклонение его продольной оси от проектной оси тоннеля, и в этом случае оптический передатчик 17 также будет изменять свое положение в пространстве, что не допустимо. Для разрешения данной ситуации оптический передатчик 17 монтируется на специальной платформе, горизонтальное и вертикальное положение которой обеспечивается электроприводами 18 и 19. Управление данными электроприводами осуществляется блоком контроля и управления 20 электроприводами 18 и 19 по информации, поступающей от микроконтроллера 11.
Создание этой системы позволяет: уменьшить габаритные размеры аппаратуры за счет применения современной элементной базы; определять пространственные координаты минищита относительно проектной оси строительства тоннеля с высокой точностью; осуществлять оперативную связь с аппаратурой, установленной на минищите, посредством лазерного луча с высокой помехозащищенностью и повышенным быстродействием.
В лабораториях ГОУ ВПО Южно-Российского государственного технического университета (Новочеркасский политехнический институт) и Общества с ограниченной ответственностью научно-производственного предприятия «ВНИКО» создан макетный образец предлагаемой системы контроля положения и управления движением минищита для строительства минитоннелей, проведены лабораторные испытания, подтвердившие работоспособность, полезность этой системы, высокий изобретательский уровень.
Проведенные патентно-информационные исследования говорят о новизне разработанной системы.
На основании вышеизложенного считаем, что предлагаемая нами «Система контроля положения и управления движением минищита для строительства минитоннелей» может быть защищена патентом Российской Федерации.
Класс E21D9/093 управление проходческим щитом
Класс E21C35/24 дистанционное управление работой врубовых машин или горных комбайнов