бифункциональный кобальтсодержащий цеолитный катализатор, способ его получения и способ получения ароматических углеводородов

Классы МПК:C07C1/04 реакцией оксида углерода с водородом 
B01J21/06 кремний, титан, цирконий или гафний; их оксиды или гидроксиды
B01J21/10 магний; его оксиды или гидроксиды
B01J23/75 кобальт
B01J29/46 металлы группы железа или медь
Автор(ы):, , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Аромагаз" (RU)
Приоритеты:
подача заявки:
2009-01-29
публикация патента:

Изобретение относится к нефтехимии, а именно к бифункциональному кобальтсодержащему цеолитному катализатору для синтеза ароматических углеводородов (смесь бензола, толуола, ксилолов и этилбензола) из синтез-газа, содержащему структурный промотор - оксид магния (II) и энергетический промотор - оксид титана или оксид гафния, в котором в качестве цеолитного компонента используют цеолит ЦВМ в Ga-форме с мольным отношением SiO2/Al2 O3=30, а сотношение компонентов в вес.ч.: кобальт 50-150, оксид магния (II) 2-8, оксид гафния или оксид титана 2-5, цеолит (Ga-форма) 100-300, способу его получения и способу получения ароматических углеводородов из синтез-газа с использованием указанного катализатора. Технический результат - возможность осуществлять селективный синтез ароматических углеводородов с выходом целевых продуктов до 143 г/м3. Катализатор характеризуется низким образованием диоксида углерода - основного побочного продукта синтеза, выход которого не превышает 100 г/м 3, а при оптимальном соотношении компонентов достигает 50 г/м3. Предложенный катализатор отличается высокой стабильностью и позволяет осуществлять синтез ароматических углеводородов без потери селективности по целевым продуктам синтеза в течение длительного времени (более 30 ч). 3 н. и 5 з.п. ф-лы, 1 табл.

Формула изобретения

1. Бифункциональный кобальтсодержащий цеолитный катализатор для получения ароматических углеводородов из синтез-газа, содержащий в качестве структурного промотора оксид магния (II) и энергетический промотор, отличающийся тем, что в качестве цеолитного компонента используют цеолит ЦВМ в Ga-форме с мольным отношением SiO 2/Al2O3=30, а в качестве энергетического промотора - оксид титана или оксид гафния, при следующем соотношении компонентов в вес.ч.:

кобальт50-150
оксид магния (II)2-8
оксид гафния или оксид титана2-5
цеолит (Ga-форма) 100-300

2. Бифункциональный катализатор по п.1, отличающийся тем, что содержание кобальта составляет предпочтительно 100 вес.ч.

3. Бифункциональный катализатор по п.1, отличающийся тем, что содержание оксида магния составляет предпочтительно 4 вес.ч.

4. Бифункциональный катализатор по п.1, отличающийся тем, что содержание оксида титана или оксида гафния составляет предпочтительно 3 вес.ч.

5. Бифункциональный катализатор по п.1, отличающийся тем, что содержание цеолита (Ga-форма) составляет предпочтительно 200 вес.ч.

6. Способ получения бифункционального кобальтсодержащего цеолитного катализатора, включающий совместное смешение водных растворов нитратов кобальта и энергетического промотора с получением осадка в виде основных карбонатов, смешение влажного осадка с сухими порошками оксида магния и цеолита ЦВМ и формование полученной массы с последующей сушкой, отличающийся тем, что в качестве нитрата промотора используют основной нитрат титана или гафния, а в качестве цеолита ЦВМ используют цеолит в Ga-форме с мольным отношением SiO2/Al2 O3=30.

7. Способ получения бифункционального катализатора по п.5, отличающийся тем, что формование осуществляют экструзией, а сушку проводят при температуре 100-150°С.

8. Способ получения ароматических углеводородов из синтез-газа, содержащего моноксид углерода и водород, включающий контактирование газа с эффективным количеством бифункционального кобальтсодержащего цеолитного катализатора при мольном отношении моноксида углерода и водорода 1:1, температуре 280°С, объемной скорости подачи газа 100 ч-1 и атмосферном давлении, отличающийся тем, что в качестве катализатора используют катализатор по п.1.

Описание изобретения к патенту

Область техники, к которой относится изобретение

Изобретение относится к нефтехимии, газохиии, углехимии, а именно к способу получения бифункционального кобальтсодержащего цеолитного катализатора, применяемого для получения ароматических углеводородов (смеси бензола, толуола, ксилолов и этилбензола) из синтез-газа (смесь моноксида углерода с газообразным водородом), а также к способу получения ароматических углеводородов с использованием этого катализатора.

Уровень техники

Ароматические углеводороды находят широкое применение в качестве сырья для производства разнообразных химических продуктов, в частности полимеров. Эти соединения производят в основном путем риформинга нефтяных фракций.

К перспективным способам получения этих ценных химических продуктов относятся альтернативные методы, не использующие нефтяное сырье, например синтез ароматических углеводородов из синтез-газа (смеси СО и Н2) - продукта окислительной конверсии различного органического сырья (природного или попутного нефтяного газа, угля, тяжелых нефтяных остатков, биомассы различного происхождения и т.д.).

Альтернативные методы в основном состоят из нескольких химических стадий, например получение из моноксида углерода и водорода (синтез-газ) линейных парафинов и их риформинг с образованием ароматических углеводородов (аренов) или синтез метанола и его конверсия в ароматические углеводороды.

Однако наиболее перспективным методом получения аренов из синтез-газа является их прямой синтез в присутствии бифункциональных катализаторов.

Известны катализаторы для получения ароматических углеводородов из СО и Н2 , приготовленные, например, механическим смешением оксида кобальта и цеолита ЦВМ в Н-форме и позволяющие синтезировать из СО и Н 2 смесь бензола, толуола и ксилолов с выходами 40-50 г/м 3 (А.Ю.Крылова, Т.М.Церцвадзе, Е.Л.Берман, А.Л.Лапидус. ХТТ, 1988, 5, С.75).

Наиболее близким к предлагаемому изобретению является способ получения ароматических углеводородов из синтез-газа, содержащего СО и Н2, в присутствии бифункционального кобальтцеолитного катализатора 30%Co-4%MgO-3%ZrO 2/HЦBM, содержащего в качестве носителя и кислотного компонента Н-форму цеолита ЦВМ с мольным отношением SiO2/Аl 2О3=40 (Б.П.Тонконогов, М.В.Крылова, А.А.Дергачев, А.Л.Лапидус // Нефтепереработка и нефтехимия, 2003. - № 6. - С.16).

Указанный катализатор готовят методом совместного осаждения активного компонента (кобальт) и промоторов (оксиды магния и циркония) на носитель и восстанавливают водородом при атмосферном давлении и температуре 450°С. Метод позволяет при практически полной конверсии синтез-газа с мольным отношением СО:Н2=1:1 при атмосферном давлении, температуре 280°С и объемной скорости подачи синтез-газа 100 ч-1 осуществлять синтез смеси ароматических углеводородов А6-A8 (бензола, толуола, ксилолов и этилбензола) с выходом целевых продуктов около 100 г/м3.

Недостатком этого катализатора является быстрая потеря его активности (в течение 2 ч), выражающаяся в резком снижении производительности катализатора по целевым продуктам (с 23 до 7 г/гКатч), а также высокое (около 130 г на 1 м3 пропущенного синтез-газа) образование диоксида углерода - побочного продукта синтеза, которое еще больше возрастает по мере потери катализатором активности (до 240 г/м3) и приводит и падению селективности в отношении образования целевых продуктов синтеза до ~10%.

Раскрытие изобретения

Задачей настоящего изобретения является создание эффективного катализатора для получения ароматических углеводородов (смеси бензола, толуола, ксилолов и этилбензола), отличающегося высокой стабильностью, сохраняющего во времени высокую селективность в отношении образования целевых продуктов и демонстрирующего низкий выход побочного продукта - диоксида углерода, а также способа получения такого катализатора и способа получения ароматических углеводородов из синтез-газа с применением такого катализатора.

Поставленная задача решается в бифункциональном кобальтсодержащем цеолитном катализаторе ЦВМ для получения ароматических углеводородов из синтез-газа, содержащем в качестве структурного промотора оксид магния (II), энергетического промотора - оксид титана или оксид гафния, а в качестве цеолитного компонента используют цеолит ЦВМ в Ga-форме с мольным отношением SiO2/Аl2О3=30, при следующем соотношении компонентов в вес.ч.:

кобальт50-150,
оксид магния (II)2-8,
оксид гафния или оксид титана2-5,
цеолит (Ga-форма) 100-300.

Наиболее предпочтительными для указанного катализатора являются следующие содержания компонентов: кобальта 100 вес.ч., оксида магния 4 вес.ч., а оксида титана или оксида гафния, предпочтительно, 3 вес.ч., цеолита (Ga-форма), предпочтительно, 200 вес.ч.

Полученный в соответствии с предложенным изобретением катализатор перед использованием в синтезе ароматических углеводородов восстанавливают водородом при атмосферном давлении и температуре 400-450°С.

Поставленная задача решается в способе получения бифункционального кобальтсодержащего цеолитного катализатора, включающем совместное смешение водных растворов нитратов кобальта и энергетического промотора с получением осадка в виде основных карбонатов, смешение влажного осадка с сухими порошками оксида магния и цеолита ЦВМ и формование полученной массы с последующей сушкой, отличающемся тем, что в качестве нитрата промотора используют основной нитрат титана или гафния, а в качестве цеолита ЦВМ используют цеолит в Ga-форме с мольным отношением SiO2/Аl2 О3=30.

Формование полученной массы предпочтительно проводить экструзией с последующим высушиванием экструдатов при температуре 100-150°С.

Поставленная задача решается в способе получения ароматических углеводородов из синтез-газа, содержащего моноксид углерода и водород, включающем контактирование газа с эффективным количеством указанного выше бифункционального кобальтсодержащего цеолитного катализатора при мольном отношении моноксида углерода и водорода 1:1, температуре 280°С, объемной скорости подачи газа 100 ч-1 и атмосферном давлении.

Установлено, что использование катализатора, соответствующего изобретению, позволяет осуществлять синтез ароматических углеводородов (смеси бензола, толуола, ксилолов и этилбензола) с низким образованием диоксида углерода - основного побочного продукта синтеза - без потери селективности по целевым продуктам синтеза в течение длительного времени.

Синтез ароматических углеводородов из оксида углерода и водорода можно осуществлять с использованием различных типов реакторов, например в реакторах с неподвижным, псевдоожиженным или суспендированным слоем катализатора. При этом размер частиц катализатора может варьироваться в зависимости от выбранного способа ведения процесса. Специалист может выбрать оптимальный размер частиц катализатора в зависимости от типа использованного реактора и выбранного режима.

Осуществление изобретения

Пример 1.

24,7 г нитрата кобальта гексагидрата, 1,3 г нитрата магния гексагидрата и 0,3 г основного нитрата гафния пентагидрата растворяют в 150 мл дистиллированной воды (раствор А). 20 г карбоната аммония (NH4)2CO3 растворяют в 200 мл воды (раствор Б). В высокий стакан помещают 10 г цеолита Ga-формы цеолита ЦВМ с мольным отношением SiO2/Аl 2О3=30, приливают раствор А, а затем при интенсивном перемешивании добавляют раствор Б. Смесь доводят до кипения и кипятят в течение 5-10 мин. Полученный осадок отфильтровывают на воронке Бюхнера и промывают горячей водой для удаления NO 3бифункциональный кобальтсодержащий цеолитный катализатор, способ   его получения и способ получения ароматических углеводородов, патент № 2407730 --ионов (наличие NO3бифункциональный кобальтсодержащий цеолитный катализатор, способ   его получения и способ получения ароматических углеводородов, патент № 2407730 --ионов контролируют по положительной реакции с дифениламином). Промытый влажный осадок формуют экструзией, экструдаты высушивают в сушильном шкафу при температуре 120-150°С и измельчают, отбирая фракцию 3 мм ×3-4 мм.

Полученный катализатор, приготовленный совместным осаждением, имеет состав, вес.ч.: 100Со:4MgO:3НfO2:200 цеолит.

Перед проведением синтеза катализатор восстанавливают водородом при атмосферном давлении и температуре 400-450°С.

Синтез ароматических углеводородов осуществляют, пропуская над катализатором синтез-газ с мольным отношением СО:Н 2=1:1 с объемной скоростью 100 ч-1 при атмосферном давлении и температуре 280°С.

Результаты испытания катализатора приведены в таблице.

Пример 2.

24,7 г нитрата кобальта гексагидрата и 0,3 г основного нитрата гафния пентагидрата растворяют в 150 мл дистиллированной воды (раствор А). 20 г карбоната аммония (NH4) 2CO3 растворяют в 200 мл воды (раствор Б). В высокий стакан помещают раствор А, к которому при интенсивном перемешивании добавляют раствор Б. Смесь доводят до кипения и кипятят в течение 5-10 мин. Полученный осадок отфильтровывают на воронке Бюхнера и промывают горячей водой для удаления NO 3бифункциональный кобальтсодержащий цеолитный катализатор, способ   его получения и способ получения ароматических углеводородов, патент № 2407730 --ионов (наличие NO3бифункциональный кобальтсодержащий цеолитный катализатор, способ   его получения и способ получения ароматических углеводородов, патент № 2407730 --ионов контролируют по положительной реакции с дифениламином). Перемешивают 10 г Ga-формы цеолита ЦВМ с мольным отношением SiO2/Аl2О3=30 и 0,2 г оксида магния, к смеси добавляют полученный влажный осадок и тщательно смешивают, затем полученную смесь формуют экструзией, экструдаты высушивают в сушильном шкафу при температуре 120-150°С и измельчают, отбирая фракцию 3 мм ×3-4 мм.

Полученный катализатор, приготовленный в соответствии с предложенным изобретением, имеет состав, вес.ч.: 100Со:4MgO:3HfО2 :200 цеолит.

Перед проведением синтеза катализатор восстанавливают водородом при атмосферном давлении и температуре 400-450°С.

Синтез ароматических углеводородов осуществляют, пропуская над катализатором синтез-газ с мольным отношением СО:Н2=1:1 с объемной скоростью 100 ч -1 при атмосферном давлении и температуре 280°С. Время эксперимента 2 ч.

Результаты испытания катализатора приведены в таблице.

Пример 3.

Бифункциональный кобальтцеолитный катализатор готовят по методике, описанной в примере 2, но при приготовлении в качестве носителя и кислотного компонента катализатора используют Н-форму цеолита ЦВМ с мольным отношением SiO2/Аl2О 3=30.

Полученный катализатор, приготовленный в соответствии с предложенным изобретением, имеет состав, вес.ч.: 100Со:4MgO:3HfO2:200 цеолит.

Условия восстановления катализатора и синтеза ароматических углеводородов аналогичны условиям, приведенным в примере 2.

Результаты испытания катализатора приведены в таблице.

Пример 4.

Бифункциональный кобальтцеолитный катализатор готовят по методике, описанной в примере 2, но при приготовлении вместо основного нитрата гафния берут 0,39 г основного нитрата титана.

Полученный катализатор, приготовленный в соответствии с предложенным изобретением, имеет состав, вес.ч.: 100Со:4MgO:3TiO2:200 цеолит.

Условия восстановления катализатора и синтеза ароматических углеводородов аналогичны условиям, приведенным в примере 2.

Результаты испытания катализатора приведены в таблице.

Пример 5.

Бифункциональный кобальтцеолитный катализатор готовят по методике, описанной в примере 2, но при приготовлении берут 12,3 г нитрата кобальта гексагидрата.

Полученный катализатор, приготовленный в соответствии с предложенным изобретением, имеет следующий состав, вес.ч.: 500Со:4MgO:3HfO2:200 цеолит.

Условия восстановления катализатора и синтеза ароматических углеводородов аналогичны условиям, приведенным в примере 2.

Результаты испытания катализатора приведены в таблице.

Пример 6.

Бифункциональный кобальтцеолитный катализатор готовят по методике, описанной в примере 2, но при приготовлении берут 37 г нитрата кобальта гексагидрата.

Полученный катализатор, приготовленный в соответствии с предложенным изобретением, имеет состав, вес.ч.: 150Со:4MgO:3HfO2:200 цеолит.

Условия восстановления катализатора и синтеза ароматических углеводородов аналогичны условиям, приведенным в примере 2.

Результаты испытания катализатора приведены в таблице.

Пример 7.

Бифункциональный кобальтцеолитный катализатор готовят по методике, описанной в примере 2, но при приготовлении берут 0,1 г оксида магния.

Полученный катализатор, приготовленный в соответствии с предложенным изобретением, имеет состав, вес.ч.: 100Со:2MgO:3HfO2:200 цеолит.

Условия восстановления катализатора и синтеза ароматических углеводородов аналогичны условиям, приведенным в примере 2.

Результаты испытания катализатора приведены в таблице.

Пример 8.

Бифункциональный кобальтцеолитный катализатор готовят по методике, описанной в примере 2, но при приготовлении берут 0,4 г оксида магния.

Полученный катализатор, приготовленный в соответствии с предложенным изобретением, имеет состав, вес.ч.: 100Со:8MgO:3HfO2:200 цеолит.

Условия восстановления катализатора и синтеза ароматических углеводородов аналогичны условиям, приведенным в примере 2.

Результаты испытания катализатора приведены в таблице.

Пример 9.

Бифункциональный кобальтцеолитный катализатор готовят по методике, описанной в примере 2, но при приготовлении берут 0,2 г основного нитрата гафния пентагидрата.

Полученный катализатор, приготовленный в соответствии с предложенным изобретением, имеет состав, вес.ч.: 100Со:4MgO:2HfO2 :200 цеолит.

Условия восстановления катализатора и синтеза ароматических углеводородов аналогичны условиям, приведенным в примере 2.

Результаты испытания катализатора приведены в таблице.

Пример 10.

Бифункциональный кобальтцеолитный катализатор готовят по методике, описанной в примере 2, но при приготовлении берут 0,5 г основного нитрата гафния пентагидрата.

Полученный катализатор, приготовленный в соответствии с предложенным изобретением, имеет состав, вес.ч.: 100Со:4MgO:5HfO2:200 цеолит.

Условия восстановления катализатора и синтеза ароматических углеводородов аналогичны условиям, приведенным в примере 2.

Результаты испытания катализатора приведены в таблице.

Пример 11.

Бифункциональный кобальтцеолитный катализатор готовят по методике, описанной в примере 2, но при приготовлении берут 5 г Ga-формы цеолита ЦВМ с мольным отношением SiO2 /Аl2О3=30.

Полученный катализатор, приготовленный в соответствии с предложенным изобретением, имеет состав, вес.ч.: 100Со:4MgO:3HfO2:100 цеолит.

Условия восстановления катализатора и синтеза ароматических углеводородов аналогичны условиям, приведенным в примере 2.

Результаты испытания катализатора приведены в таблице.

Пример 12.

Бифункциональный кобальтцеолитный катализатор готовят по методике, описанной в примере 2, но при приготовлении берут 15 г Ga-формы цеолита ЦВМ с мольным отношением SiO 2/Аl2О3=30.

Полученный катализатор, приготовленный в соответствии с предложенным изобретением, имеет состав, вес.ч.: 100Со:4MgO:3HfO2:300 цеолит.

Условия восстановления катализатора и синтеза ароматических углеводородов аналогичны условиям, приведенным в примере 2.

Результаты испытания катализатора приведены в таблице.

Пример 13.

Бифункциональный кобальтцеолитный катализатор готовят по методике, описанной в примере 2.

Полученный катализатор, приготовленный в соответствии с предложенным изобретением, имеет состав, вес.ч.: 100Со:4MgO:3HfO2 :200 цеолит.

Условия восстановления катализатора и синтеза ароматических углеводородов аналогичны условиям, приведенным в примере 2, но время синтеза составляет 8 ч.

Результаты испытания катализатора приведены в таблице.

Пример 14.

Бифункциональный кобальтцеолитный катализатор готовят по методике, описанной в примере 2.

Полученный катализатор, приготовленный в соответствии с предложенным изобретением, имеет состав, вес.ч.: 100Со:4MgO:3HfO2:200 цеолит.

Условия восстановления катализатора и синтеза ароматических углеводородов аналогичны условиям, приведенным в примере 2, но время синтеза составляет 16 ч.

Результаты испытания катализатора приведены в таблице.

Пример 15.

Бифункциональный кобальтцеолитный катализатор готовят по методике, описанной в примере 2.

Полученный катализатор, приготовленный в соответствии с предложенным изобретением, имеет состав, вес.ч.: 100Со:4MgO:3HfO2:200 цеолит.

Условия восстановления катализатора и синтеза ароматических углеводородов аналогичны условиям, приведенным в примере 2, но время синтеза составляет 32 ч.

Результаты испытания катализатора приведены в таблице.

Из приведенных в таблице данных можно сделать вывод, что использование бифункционального кобальтового катализатора, соответствующего изобретению, позволяет осуществлять селективный синтез из СО и Н2 ароматических углеводородов (смеси бензола, толуола, ксилолов и этилбензола) с выходом целевых продуктов до 143 г/м3.

Установлено, что жидкие продукты синтеза практически нацело состоят из смеси бензола, толуола, ксилолов и этилбензола.

Предложенный бифункциональный катализатор характеризуется низким образованием диоксида углерода - основного побочного продукта синтеза, выход которого не превышает 100 г/м3, а при оптимальном соотношении компонентов достигает 50 г/м3 .

Предложенный бифункциональный катализатор отличается высокой стабильностью и позволяет осуществлять синтез ароматических углеводородов из СО и H2 без потери селективности по целевым продуктам синтеза в течение длительного времени (более 30 ч).

Таблица
Показатели синтеза ароматических углеводородов из синтез-газа
Пример Состав катализатора, вес.ч. Время эксперимента, ч Выход A6-A8, г/м3 Выход СO2, г/м3 Производительность, г/кгКат·ч
СоMgO HfO2 (TiO2) Ga-ЦВМ
1а100 4 3200 2112 9527,1
2 1004 3200 2143 5129,6
3 1004 3200б 2 100130 25,3
4 100 43 (ТiO2 )200 2137 7828,6
5 504 3200 262 4814,6
6 1504 3200 2136 9817,5
7 1002 3200 2104 6625,2
8 1008 3200 2132 6527,1
9 1004 2200 2128 7624,5
10 1004 5200 2131 8427,3
11 1004 3100 2139 10218,2
12 1004 3300 254 6213,6
13 1004 3200 8145 5329,1
14 1004 3200 16140 5728,6
15 1004 3200 32138 5928,1
а катализатор приготовлен методом смешения (для сравнения)
б использована Н-форма цеолита ЦВМ.

Класс C07C1/04 реакцией оксида углерода с водородом 

способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ и устройство для изготовления частиц защищенного катализатора с помощью расплавленного органического вещества -  патент 2528424 (20.09.2014)
способ оптимизации функционирования установки для синтеза углеводородов из синтез-газа путем контроля парциального давления со -  патент 2525291 (10.08.2014)
катализатор для прямого получения синтетической нефти, обогащенной изопарафинами, и способ его получения -  патент 2524217 (27.07.2014)
регенерация катализатора фишера-тропша путем его окисления и обработки смесью карбоната аммония, гидроксида аммония и воды -  патент 2522324 (10.07.2014)
способ производства метанола, диметилового эфира и низкоуглеродистых олефинов из синтез-газа -  патент 2520218 (20.06.2014)
катализаторы -  патент 2517700 (27.05.2014)
способ производства метанола, диметилового эфира и низкоуглеродистых олефинов из синтез-газа -  патент 2516702 (20.05.2014)
способ получения углеводородных бензиновых фракций из синтез-газа, разбавленного азотом и диоксидом углерода (варианты) -  патент 2510388 (27.03.2014)
пористый керамический каталитический модуль и способ переработки отходящих продуктов процесса фишера-тропша с его использованием -  патент 2506119 (10.02.2014)

Класс B01J21/06 кремний, титан, цирконий или гафний; их оксиды или гидроксиды

способ получения этилена -  патент 2528830 (20.09.2014)
способ получения композиционных материалов на основе диоксида кремния -  патент 2528667 (20.09.2014)
способ получения высокооктанового автомобильного бензина -  патент 2524213 (27.07.2014)
способ приготовления титаноксидного фотокатализатора, активного в видимой области спектра -  патент 2520100 (20.06.2014)
композиция на основе оксидов циркония, церия и другого редкоземельного элемента при сниженной максимальной температуре восстанавливаемости, способ получения и применение в области катализа -  патент 2518969 (10.06.2014)
катализатор и способ синтеза олефинов из диметилового эфира в его присутствии -  патент 2518091 (10.06.2014)
фотокаталитические композиционные материалы, содержащие титан и известняк без диоксида титана -  патент 2516536 (20.05.2014)
катализатор очистки выхлопных газов и способ его изготовления -  патент 2515542 (10.05.2014)
способ приготовления катализатора для полного окисления углеводородов, катализатор, приготовленный по этому способу, и способ очистки воздуха от углеводородов с использованием полученного катализатора -  патент 2515510 (10.05.2014)
катализатор для получения бутадиена превращением этанола -  патент 2514425 (27.04.2014)

Класс B01J21/10 магний; его оксиды или гидроксиды

катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
катализатор и способ синтеза олефинов из диметилового эфира в его присутствии -  патент 2518091 (10.06.2014)
способ получения олефиновых углеводородов c3-c5 и катализатор для его осуществления -  патент 2514426 (27.04.2014)
способ одновременного получения ароматических углеводородов и дивинила -  патент 2495017 (10.10.2013)
способ получения модифицированного титан-магниевого нанокатализатора -  патент 2486956 (10.07.2013)
композиция катализатора со смешанным агентом, регулирующим селективность, и способ полимеризации, использующий ее -  патент 2486208 (27.06.2013)
катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота -  патент 2480281 (27.04.2013)
способ переработки углеродосодержащего сырья и катализатор для его осуществления -  патент 2476583 (27.02.2013)
катализатор для получения сверхвысокомолекулярного полиэтилена -  патент 2471552 (10.01.2013)
способ получения алкоксилированных алкиламинов/алкиловых эфиров аминов с узким распределением -  патент 2460720 (10.09.2012)

Класс B01J23/75 кобальт

катализатор для окисления сернистых соединений -  патент 2529500 (27.09.2014)
способ получения тонкодисперсной жидкой формы фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2529492 (27.09.2014)
способ получения ультранизкосернистых дизельных фракций -  патент 2528986 (20.09.2014)
способ и устройство для изготовления частиц защищенного катализатора с помощью расплавленного органического вещества -  патент 2528424 (20.09.2014)
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
способ оптимизации функционирования установки для синтеза углеводородов из синтез-газа путем контроля парциального давления со -  патент 2525291 (10.08.2014)
способ приготовления гетерогенного фталоцианинового катализатора для окисления серосодержащих соединений -  патент 2523459 (20.07.2014)
регенерация катализатора фишера-тропша путем его окисления и обработки смесью карбоната аммония, гидроксида аммония и воды -  патент 2522324 (10.07.2014)
способы гидрокрекинга с получением гидроизомеризованного продукта для базовых смазочных масел -  патент 2519547 (10.06.2014)
катализаторы -  патент 2517700 (27.05.2014)

Класс B01J29/46 металлы группы железа или медь

способ получения scr-активного цеолитного катализатора и scr-активный цеолитный катализатор -  патент 2506999 (20.02.2014)
цеолитсодержащий катализатор, способ его получения и способ превращения низкооктановых бензиновых фракций в высокооктановый бензин без и в присутствии водорода -  патент 2480282 (27.04.2013)
цеолитсодержащий катализатор, способ его получения и способ превращения алифатических углеводородов c2-c12 и метанола в высокооктановый бензин и ароматические углеводороды -  патент 2478007 (27.03.2013)
способ приготовления катализатора для разложения закиси азота и процесс обезвреживания газовых выбросов, содержащих закись азота -  патент 2477177 (10.03.2013)
способ ароматизации неароматических углеводородов -  патент 2449978 (10.05.2012)
катализатор, способ его приготовления и процесс неокислительной конверсии метана -  патент 2438779 (10.01.2012)
катализаторы и способы синтезирования алифатических углеводородов из co и h2 -  патент 2432204 (27.10.2011)
цеолитсодержащий катализатор конверсии углеводородов, способ его приготовления и способ превращения углеводородных нефтепродуктов с использованием этого катализатора -  патент 2372142 (10.11.2009)
цеолитсодержащий катализатор, способ его получения и способ превращения алифатических углеводородов c2-c 12 в ароматические углеводороды или высокооктановый компонент бензина -  патент 2333035 (10.09.2008)
катализатор для получения жидких углеводородов из диметилового эфира -  патент 2322294 (20.04.2008)
Наверх