тепловой химический источник тока

Классы МПК:H01M6/20 работающим при высокой температуре
Автор(ы):, , , , , , ,
Патентообладатель(и):Российская Федерация, от имени которой выступает государственный заказчик - Государственная корпорация по атомной энергии "Росатом" (RU),
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" (RU)
Приоритеты:
подача заявки:
2009-12-14
публикация патента:

Изобретение относится к области электротехники, к области резервных химических источников тока на твердом теле и может быть использовано для изготовления теплового источника тока с ионной проводимостью. Согласно изобретению тепловой источник тока содержит блок электрохимических элементов (ЭХЭ) в корпусе с теплоизоляцией, каждый из которых содержит последовательно чередующиеся твердые слои анода, катода, электролита, нагревательных элементов в расчетном количестве, снабженных теплоизоляцией. Блок электрохимических элементов жестко фиксирован на крышке цилиндрического корпуса вдоль вертикальной оси его, в качестве основных нагревательных элементов между слоями электрохимических элементов установлены пиронагреватели, которые выполнены из материала на основе смеси мелкодисперсного титанового и алюминиевого порошков и/или их соли, которые соединены с системой активации из электровоспламенителей для инициирования ЭХЭ. Дополнительно по внешнему контуру блока электрохимических элементов выполнен пиронагревательный элемент в виде втулки из материала основных нагревательных элементов, теплоизоляция блока электрохимических элементов выполнена составной из слоев мелкозернистого кварцевого волокна и нетканого волокнистого пресс-материала, пиротехническая втулка внутри и снаружи снабжена указанными слоями теплоизоляции, а на общем основании, жестко фиксированном на крышке корпуса, смонтированы электровоспламенители для активации и индикатор рабочего состояния, по торцам блока ЭХЭ установлены по одному пассивному ЭХЭ, электрически не соединенному с другими ЭХЭ. Техническим результатом является обеспечение требований по массово-габаритным ограничениям, повышения ресурса работы за счет стабилизации теплового режима, энергоемкости при одновременном сохранении электрохимических характеристик. 1 ил., 1 табл. тепловой химический источник тока, патент № 2408113

тепловой химический источник тока, патент № 2408113

Формула изобретения

Тепловой химический источник тока, содержащий блок электрохимических элементов (ЭХЭ) в корпусе с теплоизоляцией, каждый из которых содержит последовательно чередующиеся твердые слои анода, катода, электролита, нагревательных элементов в расчетном количестве, снабженных теплоизоляцией, отличающийся тем, что блок электрохимических элементов жестко фиксирован на крышке цилиндрического корпуса вдоль вертикальной оси его, в качестве основных нагревательных элементов между слоями электрохимических элементов установлены пиронагреватели, которые выполнены из материала на основе смеси мелкодисперсного титанового и алюминиевого порошков и/или их соли, которые соединены с системой активации из электровоспламенителей для инициирования ЭХЭ, дополнительно по внешнему контуру блока электрохимических элементов выполнен пиронагревательный элемент в виде втулки из материала основных нагревательных элементов, теплоизоляция блока электрохимических элементов выполнена составной из слоев мелкозернистого кварцевого волокна и нетканого волокнистого пресс-материала, пиротехническая втулка внутри и снаружи снабжена указанными слоями теплоизоляции, а на общем основании, жестко фиксированном на крышке корпуса, смонтированы электровоспламенители для активации и индикатор рабочего состояния, по торцам блока ЭХЭ установлены по одному пассивному ЭХЭ, электрически не соединенному с другими ЭХЭ.

Описание изобретения к патенту

Предлагаемое изобретение относится к электротехнике, к области резервных химических источников тока на твердом теле и может быть использовано для изготовления теплового источника тока с ионной проводимостью.

Известно устройство теплового источника тока, содержащего блок электрохимических элементов, каждый из которых снабжен твердыми слоями анода, катода, электролита, с теплонагревательными элементами между ними, ограниченными с внешней стороны общим корпусом (патент РФ № 1833080, МПК H01M 6/20, публ. 05.10.1995 г., БИ 28/95).

Недостатками данного устройства являются недостаточно высокие показатели энергоемкости и непродолжительные периоды работы и гарантийного срока хранения.

Известно в качестве наиболее близкого по технической сущности к заявляемому устройство теплового источника тока (ТХИТ) (патент РФ № 2091918, МПК H01M 6/36, публ. 27.09.1997 г., БИ № 27/97), содержащего блок электрохимических элементов, каждый из которых снабжен твердыми слоями анода, катода, электролита, нагревательных элементов, ограниченными с внешней стороны общим корпусом с теплоизоляцией.

К недостаткам прототипа относятся невысокие показатели энергоемкости, невысокий ресурс работы и уровень электрохимических характеристик теплового химического источника тока (ТХИТ).

Задачей авторов предлагаемого изобретения является разработка ТХИТ, обеспечивающего требования по массово-габаритным ограничениям с повышенным ресурсом работы, повышенной энергоемкостью при одновременном сохранении электрохимических характеристик.

Новый технический результат, получаемый при использовании предлагаемого изобретения, заключается в обеспечении требований по массово-габаритным ограничениям, повышении ресурса работы за счет стабилизации теплового режима и энергоемкости при одновременном сохранении электрохимических характеристик.

Указанные задача и новый технический результат достигаются тем, что в отличие

от известной конструкции теплового источника тока, содержащего блок электрохимических элементов в корпусе с теплоизоляцией, каждый из которых снабжен твердыми слоями анода, катода, электролита, нагревательных элементов, ограниченными с внешней стороны общим корпусом с крышкой, в предлагаемой конструкцией, блок электрохимических элементов жестко фиксирован на крышке корпуса вдоль вертикальной оси его, в качестве основных нагревательных элементов между слоями электрохимических элементов установлены пиронагреватели, которые выполнены из материала на основе смеси мелкодисперсного титанового и алюминиевого порошков, дополнительно по внешнему контуру блока электрохимических элементов выполнен пиронагревательный элемент в виде втулки из материала основных нагревательных элементов, теплоизоляция теплового источника тока выполнена составной из слоев мелкозернистого кварцевого волокна и нетканого теплостойкого волокнистого пресс-материала, пиротехническая втулка расположена между указанными слоями теплоизоляции, а на общем основании, жестко фиксированном на крышке корпуса, смонтированы электровоспламенители для активации ТХИТ и индикатор рабочего состояния, по торцам блока ЭХЭ установлены по одному пассивному ЭХЭ, электрически не соединенному с другими ЭХЭ.

Предлагаемая конструкция ТХИТ поясняется следующим образом.

На чертеже представлен вид предлагаемого теплового химического источника тока, где 1 - цилиндрический корпус, выполненный преимущественно из стали, на котором жестко фиксирована, например сваркой, крышка 2, ограничивающая собой герметичное пространство ТХИТ. Вдоль вертикальной оси цилиндрического корпуса в герметичном пространстве источника установлен и жестко фиксирован блок электрохимических элементов (ЭХЭ) 3. Блок электрохимических элементов состоит из расчетного количества чередующихся последовательно собственно электрохимических элементов и нагревательных элементов. Каждый ЭХЭ представляет собой пресс-пакет из твердых слоев анода, электролита и катода. Для нагрева блока ЭХЭ до рабочей температуры и обеспечения электрической связи между ними установлены пиронагреватели, которые выполнены из материала на основе смеси мелкодисперсного титанового и алюминиевого порошков. Каждый слой пиронагревательного элемента представляет собой запрессованный в металлическую оболочку тепловыделяющий пиротехнический состав. Система пиронагевательных элементов задействуется при срабатывании электровоспламенителей (ЭВ) 4 и пиротехнических соединительных элементов 6. Для сохранения необходимой рабочей температуры в блоке ЭХЭ в период работы ТХИТ по внутренним поверхностям цилиндрического корпуса 1 и крышки 2 установлены в качестве составной теплоизоляции теплоизоляционные элементы 8, 9, 10, при этом крышка 2 электро- и теплоизолирована теплоизоляционным материалом 11, 12.

Корпус 1 и крышка 2 выполнены из стали с толщиной стенок от 0,5 мм до 1 мм, что, как подтверждено экспериментально, оптимально для обеспечения достаточной механической прочности ТХИТ и для соблюдения заданных ограничений по массе.

Блок ЭХЭ теплоизолирован со всех сторон теплоизоляционным материалом, состоящим из слоев мелкозернистого кварцевого волокна, имеющим низкий коэффициент теплопроводности.

В тепловом источнике на общем основании 5 установлены элементы системы активации с электровоспламенителями (ЭВ) 4 и индикатор контрля 7 рабочего состояния ТХИТ. Для обеспечения требуемого времени работы ТИТ по торцам блока ЭХЭ установлены по одному пассивному ЭХЭ (электрически не соединенному с другими ЭХЭ), что способствует стабилизации теплового режима по оси блока ЭХЭ.

Предлагаемое устройство работает следующим образом. При подаче импульса тока на электрический мостик ЭВ от постороннего источника тока срабатывает ЭВ и дает форс пламени на систему пиротехнических соединительных элементов 6, выполненных в виде пиротехнической ленты, при горении которых воспламеняются пиронагревательные элементы, установленные между слоями ЭХЭ. При достижении рабочей температуры электролит становится ионопроводящим, а на ЭХЭ возникает разность потенциалов, после нарастания которой до требуемой величины ТХИТ готов к работе.

Высокие температуры ионных расплавов, использование энергоемких электрохимических пар (LiB-NiCl2), как это было экспериментально показано, обеспечивает в предлагаемом тепловом химическом источнике тока высокие удельные показатели - рабочие напряжения (2,1-2,6 В на один элемент) и значительные плотности тока разряда (до 0,5 А/см 2 в импульсном режиме), что значительно превышает показатели прототипа.

Таким образом, при использовании предлагаемого теплового источника тока обеспечиваются требования по массово-габаритным ограничениям, повышение ресурса работы и энергоемкости за счет стабилизации теплового режима при одновременном сохранении электрохимических характеристик.

Возможность промышленной реализации предлагаемого теплового химического источника тока подтверждается следующими примерами.

Пример 1. В лабораторных условиях предлагаемый ТХИТ был реализован в виде опытного образца теплового химического источника тока. Он представляет собой установленные по вертикальной оси в цилиндрическом корпусе 1 (см. чертеж), соединенном герметично аргонно-дуговой сваркой с крышкой 2 11 единиц ЭХЭ в составе блока ЭХЭ - 3. Корпус 1 и крышка 2 выполнены из нержавеющей стали 12Х18Н10Т ГОСТ 5632-72, толщина стенок 0,7 мм. Блок ЭХЭ крепится на крышке с помощью 3-х винтов М4-7Н. Необходимое рабочее напряжение теплового источника тока (ТИТ) обеспечивается путем последовательного соединения (набора в «столб») всего пакета ЭХЭ. В ТХИТ по торцам блока ЭХЭ установлены по одному пассивному ЭХЭ. Для нагрева ЭХЭ до рабочей температуры и обеспечения электрической связи между ЭХЭ установлены запрессованные в металлическую оболочку пиротехнические составы.

Для сохранения необходимой температуры в блоке ЭХЭ 3 и ограничения температуры корпуса 1 по его внутренним поверхностям установлены теплоизоляторы 8, 9, 10, выполненные из ТЗМК-20 ТУ 1-596-290-89, при этом крышка 2 дополнительно тепло- и электроизолирована слоями теплоизоляционных материалов 11, 12 («Картон -Н» 4682601.013-89 ТУ, слюда ССП ГОСТ 13750-88).

Пример 2. Для увеличения ресурса рабочего времени ТХИТ в качестве опытного образца реализовано предлагаемое устройство по условиям примера 1, в котором по боковой поверхности блока ЭХЭ установлен дополнительно пиронагревательный элемент в виде втулки 13, расположенной между двумя слоями теплоизоляции (внутреннего из «Картон-Н» и внешнего - из материала ТЗМК-20). Пиротехническая втулка служит аккумулятором тепла, что позволяет расширить интервал поддержания рабочей температуры в блоке ЭХЭ.

Результаты измерений сведены в таблицу 1.

Как показали примеры и данные таблицы 1, использование предлагаемого ТХИТ позволило обеспечить требования по массово-габаритным ограничениям, повысить ресурс работы и энергоемкость за счет стабилизации теплового режима при одновременном сохранении электрохимических характеристик.

Таблица 1
Примеры реализации Наименование показателей Ед.изм.Значение показателей предлагаемого ТХИТ Значение показателей ТХИТ прототипа Срок годности ТХИТ Примечание
12 34 56 7
Прототип ТХИТХарактеристики: тепловой химический источник тока, патент № 2408113 тепловой химический источник тока, патент № 2408113 тепловой химический источник тока, патент № 2408113 тепловой химический источник тока, патент № 2408113 Недостаточно высокие показатели энергоемкости, времени работы, массы, надежности
ТокА тепловой химический источник тока, патент № 2408113 До 3,5 А тепловой химический источник тока, патент № 2408113
НапряжениеВ тепловой химический источник тока, патент № 2408113 21,0-30,0 Втепловой химический источник тока, патент № 2408113
Емкость А*с тепловой химический источник тока, патент № 2408113 277,0 17 лет
Удельная энергия Вт*ч/кг тепловой химический источник тока, патент № 2408113 6,1 тепловой химический источник тока, патент № 2408113
Время работыс тепловой химический источник тока, патент № 2408113 106,0 тепловой химический источник тока, патент № 2408113
Габаритымм тепловой химический источник тока, патент № 2408113 тепловой химический источник тока, патент № 2408113 47,5*70,2тепловой химический источник тока, патент № 2408113
Массаг тепловой химический источник тока, патент № 2408113 310,0 тепловой химический источник тока, патент № 2408113
Предлагаемый ТХИТ Характеристики:тепловой химический источник тока, патент № 2408113 тепловой химический источник тока, патент № 2408113 тепловой химический источник тока, патент № 2408113 тепловой химический источник тока, патент № 2408113 Улучшение по характеристикам: время работы, снимаемая емкость, удельная энергия, масса, надежность, стабилизация теплового режима
Ток АДо 3,5 А тепловой химический источник тока, патент № 2408113 тепловой химический источник тока, патент № 2408113
НапряжениеВ 21,0-30,0 В тепловой химический источник тока, патент № 2408113 тепловой химический источник тока, патент № 2408113
ЕмкостьА*с 579,0 тепловой химический источник тока, патент № 2408113 тепловой химический источник тока, патент № 2408113
Удельная энергия Вт*ч/кг17,5 тепловой химический источник тока, патент № 2408113 17 лет
Время работы с 199,0тепловой химический источник тока, патент № 2408113 тепловой химический источник тока, патент № 2408113
Габаритымм тепловой химический источник тока, патент № 2408113 47,5*70,2тепловой химический источник тока, патент № 2408113 тепловой химический источник тока, патент № 2408113
Массаг 230,0тепловой химический источник тока, патент № 2408113 тепловой химический источник тока, патент № 2408113

Класс H01M6/20 работающим при высокой температуре

пиротехнический источник электрического тока -  патент 2525843 (20.08.2014)
пиротехнический источник электрического тока -  патент 2519274 (10.06.2014)
электролит для химических источников тока -  патент 2506669 (10.02.2014)
расплавляемый электролит для химического источника тока -  патент 2506668 (10.02.2014)
электролит для химического источника тока -  патент 2505891 (27.01.2014)
электролит для химического источника тока -  патент 2484556 (10.06.2013)
пиротехнический источник электрического тока -  патент 2468478 (27.11.2012)
тепловая батарея -  патент 2457586 (27.07.2012)
электролит для химического источника тока -  патент 2399994 (20.09.2010)
пиротехнический источник тока -  патент 2364989 (20.08.2009)
Наверх