способ пиролиза углеводородов с получением углеродных наноструктур и устройство для его осуществления

Классы МПК:C10G15/12 с помощью газов, перегретых в электрической дуге, например плазмы
B82B1/00 Наноструктуры
Автор(ы):, , , ,
Патентообладатель(и):Открытое акционерное общество "Конструкторское бюро химавтоматики" (RU)
Приоритеты:
подача заявки:
2009-05-15
публикация патента:

Изобретение относится к области химической технологии, в частности к плазмохимическому пиролизу углеводородного сырья и получению продуктов реакции. Изобретение касается устройства для пиролиза углеводородов с получением углеродных наноструктур, ацетилена и водорода, содержащего плазмохимический реактор с плазмотроном, охладитель, сепаратор, линии продуктов реакции, линию подачи пиролизуемого газа, при этом в линию подачи пиролизуемого газа установлен эжектор, вход всасывающей полости которого соединен с емкостью «летучего» катализатора, а выход эжектора соединен с входной полостью плазмотрона. Также изобретение касается способа пиролиза углеводородов. Технический результат - улучшение технологий осуществления плазмохимических реакций углеводородов, повышение эффективности процесса и расширение номенклатуры получаемых продуктов реакции. 2 н.п. ф-лы, 1 табл., 2 ил. способ пиролиза углеводородов с получением углеродных наноструктур   и устройство для его осуществления, патент № 2409611

способ пиролиза углеводородов с получением углеродных наноструктур   и устройство для его осуществления, патент № 2409611 способ пиролиза углеводородов с получением углеродных наноструктур   и устройство для его осуществления, патент № 2409611

Формула изобретения

1. Устройство для пиролиза углеводородов с получением углеродных наноструктур, ацетилена и водорода, содержащее плазмохимический реактор с плазматроном, охладитель, сепаратор, линии продуктов реакции, линию подачи пиролизуемого газа, отличающийся тем, что в линию подачи пиролизуемого газа установлен эжектор, вход всасывающей полости которого соединен с емкостью «летучего» катализатора, а выход эжектора соединен с входной полостью плазматрона.

2. Способ пиролиза углеводородов, осуществляемый в устройстве по п.1, основанный на нагреве углеводородных газов в водородной электроплазменной дуге плазматрона с последующим разложением в плазмохимическом реакторе и охлаждением продуктов реакции, отличающийся тем, что в катодно-анодную область плазматрона эжектируют «летучий» катализатор, например раствор ферроцена в ксилоле, причем в качестве рабочего газа эжектора используют пиролизуемый газ.

Описание изобретения к патенту

Изобретение относится к области химической технологии, в частности к плазмохимическому пиролизу углеводородного сырья и получению продуктов реакции.

Одной из проблем улучшения технологий плазмохимических реакций углеводородов является повышение эффективности процесса и расширение номенклатуры получаемых продуктов реакции.

Известен способ плазмохимического пиролиза углеводородного сырья посредством смешения сырья с теплоносителем, нагретым в электрической дуге, и устройство для его реализации (см. В.Н.Антонов и др. «Производство ацетилена», стр.131-151, М.: Химия, 1970).

Известен способ плазмохимического пиролиза углеводородов, характеризующийся тем, что в плазмообразующий газ вводят водяной пар (см. патент РФ № 2078117, кл. C10G 15/12, публ. 27.04.1997).

Недостатком известных технических решений является низкая эффективность процесса, в результате которого получается только один продукт - ацетилен. Все остальные побочные результаты реакции не выделяются в отдельные продуктовые компоненты.

Известен способ плазмохимического пиролиза углеводородов, в результате которого получают ацетилен и водород, и устройство для его реализации (см. патент РФ № 2202593, МПК C10G 15/12, публ. 20.04.2003 - прототип).

Недостатками данного технического решения также являются низкая эффективность процесса и узкая номенклатура получаемых продуктов реакции.

Целью предлагаемого изобретения является устранение указанных недостатков и расширение номенклатуры продуктов за счет получения углеродных наноструктур, организация непрерывного процесса разложения природного газа (метана) путем подключения предлагаемого устройства к стационарной коммуникации подачи газа.

Предлагаемое техническое решение реализуется в устройстве для пиролиза углеводородов с получением углеродных наноструктур, ацетилена и водорода, содержащем плазмохимический реактор с плазмотроном, охладитель, сепаратор, линии продуктов реакции, линию подачи пиролизуемого газа, в котором согласно изобретению в линию подачи пиролизуемого газа установлен эжектор, вход всасывающей полости которого соединен с емкостью «летучего» катализатора, а выход эжектора соединен с входной полостью плазмотрона.

В предлагаемом устройстве осуществляется способ пиролиза углеводородов, основанный на нагреве углеводородных газов в водородной электроплазменной дуге плазмотрона, с последующим разложением в плазмохимическом реакторе и охлаждением продуктов реакции, где согласно изобретению в катодно-анодную область плазмотрона эжектируют «летучий» катализатор, например раствор ферроцена в ксилоле, причем в качестве рабочего газа эжектора используют пиролизуемый газ.

Данная совокупность признаков проявляет новые свойства, заключающиеся в том, что благодаря наличию управляемого количества «летучего» катализатора в катодно-анодной области плазмотрона, на выходе установки, кроме ацетилена и водорода образуется такой продукт, как наноструктурированные углеродные частицы (нанотрубки, нановолокна и т.д.).

В качестве пиролизуемых газов в предлагаемом устройстве могут использоваться газы, являющиеся членами гомологического ряда алканов (метан, этан, пропан и т.д.). «Летучим» катализатором могут являться растворы: ферроцена в ксилоле, ферроцена в бензоле, азотнокислого железа (III) в этаноле и др.

Центральным узлом предлагаемого устройства является плазмохимический реактор с плазмотроном, где происходит процесс получения веществ с помощью химических превращений (пиролиз) при температурах до 2000°С и избыточных давлениях около 0,1-0,5 кгс/см2 . Нагрев углеводородных газов осуществляется «холодной» плазмой с температурой до 10000°С. Источником электрической плазмы служит двухструйный плазмотрон, в котором в качестве плазмообразующего газа используется водород или водородосодержащие газы пиролиза.

Принципиальная схема предлагаемого устройства представлена на фиг.1, где:

1 - плазмохимический реактор;

2 - плазмотрон;

3 - эжектор;

4 - линии подачи пиролизуемого газа;

5 - емкость с «летучим» катализатором;

6 - линия продуктов реакции;

7 - устройство выделения углеродных наноструктур;

8 - охладитель;

9 - сепаратор;

10 - агрегаты управления, датчики;

11 - линия подачи «летучего» катализатора;

12 - линия наддува пирогазом;

13 - линия возврата части газов пиролиза;

14 - линия соединения с атмосферным давлением;

15 - линии подачи водорода из накопительной емкости;

16 - линия выхода готового продукта в виде углеродных наноструктур;

17 - линия подачи пирогаза во вход охладителя и далее в сепаратор;

18 - линия отвода части пирогаза в качестве получаемого продукта на дальнейшее разделение, очистку, накопление и подачу потребителю.

Устройство для пиролиза углеводородов с получением углеродных наноструктур состоит из плазмохимического реактора 1 с двухструйным плазмотроном 2, входная полость которого соединена с выходом эжектора 3, установленного в линию подачи пиролизуемого газа 4, причем вход всасывающей полости эжектора 3 соединен с емкостью «летучего» катализатора 5.

Выход плазмохимического реактора 1 соединен линией продуктов реакции 6 со входом устройства выделения углеродных наноструктур 7, в котором имеется линия выхода готового продукта 16 в виде углеродных наноструктур - «Выход 1». Выход пирогаза из устройства 7 соединен линией подачи пирогаза 17 со входом охладителя 8 и далее с сепаратором 9. Выход сепаратора 9 имеет линию отвода части пирогаза 18 в качестве получаемого продукта на дальнейшее разделение, очистку, накопление и подачу потребителю («Выход 2») и соединен линией возврата части пирогаза 13 со входной линией подачи водорода 15 в плазмохимический реактор 1 вместо водорода для плазмообразования.

Все технологически важные линии снабжены агрегатами управления и датчиками 10.

Подготовка устройства к работе заключается в установлении необходимых давлений, расходов компонентов и подачи напряжения на электроды плазмотрона 2 для разложения пиролизуемого газа за счет нагрева в «холодной» электроплазменной дуге.

По линии подачи пиролизуемого газа 4 углеводородное сырье поступает в катодно-анодную область плазмотрона 2. Являясь рабочим газом эжектора 3, пиролизуемый газ подается в плазмохимический реактор 1 вместе с «летучим» катализатором, который засасывается эжектором 3 из емкости 5. Емкость 5 с «летучим» катализатором оснащена линией наддува пирогазом 12 и линией соединения с атмосферным давлением 14 для исключения разрежения во внутренней полости. Наличие «летучего» катализатора в области электрической дуги плазмотрона 2 изменяет ход пиролиза в плазмохимическом реакторе 1 таким образом, что наряду с основными составляющими реакции (ацетилен и водород) получается углерод, но не в виде аморфной сажи, а в виде наноструктурированных углеродных частиц (нанотрубок, нановолокон и т.п.).

Часть водородосодержащего пирогаза, получаемого в результате пиролиза углеводородного сырья, используется для поддержания реакции в качестве плазмообразующего газа путем подачи части газов пиролиза по линии возврата 13 на вход плазмотрона после прекращения подачи водорода по линиям 15.

Предлагаемое устройство было испытано в 2008 году. Результаты предварительных испытаний представлены в таблице 1.

Состав пирогаза определялся в газоаналитическом комплексе СГК-81.

Микрофотография углеродных наноструктур представлена на фиг.2.

Таблица 1

Результаты предварительных испытаний предлагаемого
устройства
№ п/пНаименование параметраСреднее значение параметра
1Расход газообразного водорода на входе (при запуске) 100 нм3
2Избыточное давление газообразного водорода на входе (при запуске) 6 кгс/см2
3Температура газообразного водорода на входе (при запуске) 20°С
4Расход природного газа на входе120 нм3
5Избыточное давление природного газа на входе 3 кгс/см2
6Температура природного газа на входе20°С
7 Расход «летучего» катализатора на входе 10 л/ч
8Температура «летучего» катализатора на входе 20°С
9Напряжение на электродах1200 В
10 Сила постоянного тока 225 А
способ пиролиза углеводородов с получением углеродных наноструктур   и устройство для его осуществления, патент № 2409611 Состав продуктов разложения природного газа способ пиролиза углеводородов с получением углеродных наноструктур   и устройство для его осуществления, патент № 2409611
способ пиролиза углеводородов с получением углеродных наноструктур   и устройство для его осуществления, патент № 2409611 (пирогаза), в том числе:способ пиролиза углеводородов с получением углеродных наноструктур   и устройство для его осуществления, патент № 2409611
способ пиролиза углеводородов с получением углеродных наноструктур   и устройство для его осуществления, патент № 2409611 Н2 70 об.%
11 С2Н2 10 об.%
способ пиролиза углеводородов с получением углеродных наноструктур   и устройство для его осуществления, патент № 2409611 СН4 13,5 об.%
способ пиролиза углеводородов с получением углеродных наноструктур   и устройство для его осуществления, патент № 2409611 Сm Нn6 об.%
способ пиролиза углеводородов с получением углеродных наноструктур   и устройство для его осуществления, патент № 2409611 Углеродных наноструктурдо 1 кг/ч

Микрофотография углеродных наноструктур получена на электронном микроскопе Scanning Electron Microscope JEOL SM-6380LV.

Таким образом, использование предлагаемого изобретения позволит наряду с традиционными составляющими реакции пиролиза углеводородов (ацетилен и водород) получить наноструктурированные частицы углерода (нанотрубки, нановолокна и т.д.) и тем самым повысить эффективность процесса и расширить номенклатуру получаемых продуктов пиролиза.

Класс C10G15/12 с помощью газов, перегретых в электрической дуге, например плазмы

способ переработки нефти и/или нефтяных остатков -  патент 2503709 (10.01.2014)
способ и устройство для получения ацетилена -  патент 2451658 (27.05.2012)
способ плазмохимической переработки сырья органического или растительного происхождения и устройство для плазмохимической переработки сырья органического или растительного происхождения -  патент 2448768 (27.04.2012)
способ крекинга углеводородов и плазменный реактор для его осуществления -  патент 2422493 (27.06.2011)
устройство для плазмохимического гидрокрекинга углеводородных фракций -  патент 2411286 (10.02.2011)
способ переработки нефти и газового конденсата -  патент 2395560 (27.07.2010)
способ получения этилена из природного газа -  патент 2358960 (20.06.2009)
способ плазмохимического гидрокрекинга тяжелых углеводородных фракций и устройство для его реализации -  патент 2343181 (10.01.2009)
способ гидрокрекинга тяжелых углеводородных фракций и устройство для его реализации -  патент 2319730 (20.03.2008)
способ конверсии метана плазменно-каталитическим окислением и устройство для его осуществления -  патент 2315802 (27.01.2008)

Класс B82B1/00 Наноструктуры

многослойный нетканый материал с полиамидными нановолокнами -  патент 2529829 (27.09.2014)
материал заменителя костной ткани -  патент 2529802 (27.09.2014)
нанокомпозитный материал с сегнетоэлектрическими характеристиками -  патент 2529682 (27.09.2014)
катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
способ определения направления перемещения движущихся объектов от взаимодействия поверхностно-активного вещества со слоем жидкости над дисперсным материалом -  патент 2529657 (27.09.2014)
способ формирования наноразмерных структур -  патент 2529458 (27.09.2014)
способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано или микроструктурных эмиттерах -  патент 2529452 (27.09.2014)
способ изготовления стекловидной композиции -  патент 2529443 (27.09.2014)
комбинированный регенеративный теплообменник -  патент 2529285 (27.09.2014)
способ изготовления тонкопленочного органического покрытия -  патент 2529216 (27.09.2014)
Наверх