способ получения композиционного материала на основе карбосилицида титана
Классы МПК: | B22F3/14 с одновременным проведением процесса уплотнения и спекания C22C1/05 смеси металлического порошка с неметаллическим C22C29/18 на основе силицидов B82B3/00 Изготовление или обработка наноструктур |
Автор(ы): | Анциферов Владимир Никитович (RU), Каченюк Максим Николаевич (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" (RU) |
Приоритеты: |
подача заявки:
2009-10-26 публикация патента:
27.01.2011 |
Изобретение относится к порошковой металлургии, в частности к способам получения композиционных материалов на основе карбосилицида титана. Может применяться для деталей, работающих в условиях экстремальных температур, повышенных нагрузок и агрессивных, ядовитых и радиоактивных сред, в химической, энергетической, нефтедобывающей и газодобывающей промышленности, в машиностроении. Порошковую смесь, состоящую из титана, карбида кремния, углерода и 3-7 мас.% наноразмерного оксида алюминия, подвергают механосинтезу в вакуумированной мельнице, после чего проводят холодное прессование и горячее прессование при 5-15 МПа.
Формула изобретения
Способ получения композиционного материала на основе карбосилицида титана, включающий создание порошковой смеси, состоящей из титана, кремния, графита или соединений, их содержащих, механосинтез порошковой смеси, холодное и горячее прессование, отличающийся тем, что в порошковую смесь вводят 3-7 мас.% наноразмерного порошка оксида алюминия, а горячее прессование проводят при давлении 5-15 МПа.
Описание изобретения к патенту
Изобретение относится к производству композиционных материалов на основе карбосилицида титана с высокой износостойкостью, работающих в условиях экстремальных температур, повышенных нагрузок и агрессивных, ядовитых и радиоактивных сред, может найти применение в порошковой металлургии, в химической, энергетической, нефтедобывающей и газодобывающей промышленности, в машиностроении.
Известно получение карбосилицида титана (Ti3SiC 2) твердофазным синтезом в условиях вакуума и при избытке кремниевой составляющей. На промежуточных стадиях синтеза из материала испарением удаляют избыток элементарного кремния (Получение Ti3SiC2 / П.В.Истомин, А.В.Надуткин, Ю.И.Рябков, Б.А.Голдин // Неорганические материалы. Изд. «Наука», 2006, том 42, № 3, с.292-297). Материал характеризуется размером зерна 50-200 мкм, равновесной структурой, содержанием небольшого количества примесей карбида и силицидов титана. Недостатками являются сложность получения материала с заданным содержанием примесных фаз путем испарения избытка кремниевой составляющей при вакуумно-термической обработке, необходимость применения высоких температур и давлений при компактировании порошков с равновесной структурой, а также высокочистого и, соответственно, более дорогостоящего исходного сырья для получения минимального количества примесей карбида и силицидов титана.
Известно получение материалов на основе карбосилицида титана с применением метода реакционного горячего прессования (Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2 / Barsoum M.W., El-Raghy T. // J. Am. Ceram. Soc. 1996. V.79. P.1953-1956). Недостатком являются высокие температура и давление, приводящие к использованию сложного технологического оборудования, высоким энергозатратам.
В качестве ближайшего аналога заявляемому техническому решению выбран синтез 312-фаз и композитов на их основе по патенту США на изобретение № 5942455, С01В 33/00, опубл. 24.08.1999 г. Процесс получения продукта включает создание смеси порошков переходного металла или его соединения, в качестве которых используют титан или гидрид титана, соединения кремния и углерода. Вторым этапом процесса получения продукта на основе карбосилицида титана является реакционное горячее прессование указанной смеси порошков, максимальная температура которого 1800°С, максимальное давление - 200 МПа. Конечный продукт содержит примесей около 5 масс.%, имеет плотность, близкую к теоретической плотности. Недостатком являются высокие температуры и давления и, следовательно, высокие энергозатраты при получении материала и сложность технологического оборудования, обеспечивающего данные режимы.
Техническим результатом заявляемого технического решения является получение композиционного материала на основе карбосилицида титана с заданным содержанием примесных фаз, низкой пористостью, повышенной твердостью и износостойкостью, с использованием недорогого легкодоступного сырья, при снижении энергозатрат.
Технический результат достигается тем, что в способе получения композиционного материала на основе карбосилицида титана, включающем создание порошковой смеси, состоящей из титана, кремния, графита или соединений, их содержащих, механосинтез порошковой смеси, горячее прессование смеси, согласно изобретению в порошковую смесь вводят наноразмерный порошок оксида алюминия 3-7 масс.%, горячее прессование проводят при давлении 5-15 МПа.
Технический результат обеспечивается за счет введения в исходную порошковую смесь порошка оксида алюминия (Al2 O3) с размером частиц 20-100 нм. Введение наноразмерного порошка оксида алюминия обусловлено его высокой активностью и равномерностью распределения по границам зерен исходных порошков в процессе механосинтеза. Добавление 3÷7 масс.% наноразмерного порошка Al2O3 снижает рост зерна при горячем прессовании, а также снижает содержание примесей, уменьшающих вязкость композиционного материала, повышает твердость и износостойкость композиционного материала на основе карбосилицида титана.
Способ получения композиционного материала на основе карбосилицида титана заключается в следующем.
Исходную порошковую смесь титана (средний размер частиц 100-250 мкм), карбида кремния (средний размер частиц 2-10 мкм), графита (средний размер частиц 2-10 мкм) в мольном соотношении 3:1,25:0,75 и 3-7 масс.% порошка Al2O3 (средний размер частиц 20-100 нм) помещают в кювету планетарной мельницы совместно с мелющими шарами в соотношении 1:15 или 1:30, вакуумируют до остаточного давления менее 2 Па и подвергают механосинтезу.
Механосинтез, обеспечивающий гомогенизацию, сухое измельчение, повышение химической активности компонентов, протекание твердофазных реакций и снижение энергозатрат за счет перевода частиц порошков в высоконеравновесное состояние, проводят при частоте вращения барабана мельницы 320 об/мин в циклическом режиме с промежуточным охлаждением. Указанные параметры обеспечивают подвод к частицам энергии, необходимой для активации процессов образования новых фаз. При частоте вращения барабана мельницы менее 260 об/мин образования карбосилицида не происходит, т.к. энергии мелющих тел недостаточно для активации энергии синтеза. При частоте вращения барабана более 330 об/мин происходит интенсивный разогрев смеси порошков и ее налипание на стенки кюветы мельницы, что препятствует процессу механосинтеза. Оптимальной частоте вращения барабана 320 об/мин соответствует следующий циклический режим работы мельницы: 20-30 мин - непосредственно механосинтез при вращающемся барабане, 40-60 мин - охлаждение при неподвижном барабане. Общая продолжительность механосинтеза составляет 3 часа.
Затем проводят холодное прессование порошковой смеси при 300 МПа с последующим горячим прессованием в графитовой пресс-форме при температуре 1350-1450°С, давлении 5-15 МПа и изотермической выдержке 0,5-2 часа, в вакууме или в атмосфере инертного газа. Нагрузку прикладывают непосредственно перед началом нагрева, нагрев ведут со скоростью 10 град./мин.
С помощью изменения параметров механосинтеза и горячего прессования регулируют размер зерна, фазовый состав и плотность композиционного материала.
Общая продолжительность механосинтеза менее 1 часа приводит к укрупнению размера зерна и снижению плотности композиционного материала, а более 3 часов - к загрязнению материала и снижению содержания карбосилицида титана.
Регулированием температуры и давления горячего прессования изменяют фазовый состав и плотность композиционного материала. Проведение горячего прессования при температуре ниже 1400°С приводит к снижению плотности материала и к увеличению содержания примеси карбида титана. При температуре горячего прессования более 1500°С плотность композиционного материала увеличивается, а содержание карбосилицида титана снижается. Давление горячего прессования менее 5 МПа не позволяет достичь достаточной плотности композиционного материала (более 90% от теоретической) и, следовательно, приемлемых механических свойств. При использовании давления более 15 МПа значительно возрастает сложность и стоимость технологического оборудования.
Содержание добавки наноразмерного оксида алюминия влияет на твердость, износостойкость и содержание карбосилицида титана в композиционном материале. Экспериментально установлено, что введение в композиционный материал менее 3 масс.% оксида алюминия не оказывает влияния на его механические свойства. При увеличении содержания Al2O3 от 3 до 7 масс.% твердость и износостойкость материала возрастает, а содержание примеси карбида титана падает. Полученный композиционный материал обладает износостойкостью в 1,5-5 раз выше по сравнению с износостойкостью карбида кремния. Введение более 7 масс.% оксида алюминия приводит к снижению содержания карбосилицида титана и трещиностойкости материала.
Данным способом получают композиционный материал плотностью от 4,4 до 4,6 г/см 3 в зависимости от фазового состава. Экспериментально установлено влияние содержания порошка оксида алюминия на фазовый состав конечного продукта. Добавление наноразмерного порошка оксида алюминия снижает содержание примесей карбида и силицидов титана, что позволяет отказаться от использования высокочистого дорогостоящего сырья. Повышение содержания фазы Ti3SiC2 благоприятно сказывается на квазипластических свойствах материала и повышает его трещиностойкость.
Добавка наноразмерного порошка оксида алюминия замедляют рост зерна материала при горячем прессовании, что также повышает пластические свойства материала. Частицы оксида алюминия выступают в качестве дисперсно-упрочняющей фазы и повышают износостойкость композиционного материала.
Пример 1
Готовят смесь: 17,71 г порошка титана ТПП-7 фракции менее 125 мкм, 6,18 г порошка технического карбида кремния фракции менее 10 мкм, 1,11 г порошка углерода марки С-1, 0,75 г порошка Al2O3 фракции 20-100 нм. Порошковую смесь подвергают механосинтезу в планетарной мельнице «САНД» при соотношении масс мелющих шаров и порошковой смеси 30:1, в атмосфере вакуума, в циклическом режиме (20 мин - механосинтез, 40 мин охлаждение), с общей продолжительностью механосинтеза 3 ч. Полученную шихту подвергают холодному прессованию при 300 МПа, затем горячему прессованию при температуре 1400°С, давлении 15 МПа, выдержке 1 ч. В результате получают композиционный материал, содержащий 65 масс.% карбосилицида, 3 масс.% оксида алюминия и 32 масс.% карбида титана. По данным рентгенофазового анализа примеси силицидов титана отсутствуют. Плотность полученного материала составляет 4,60 г/см3 (пористость - менее 1%), твердость - 8 ГПа.
Пример 2
Готовят смесь: 17,71 г порошка титана ТПП-7 фракции менее 250 мкм, 6,18 г порошка технического карбида кремния фракции менее 10 мкм, 1,11 г порошка углерода марки С-1, 0,75 г порошка Al 2O3 фракции 20-100 нм. Порошковую смесь подвергают механосинтезу в планетарной мельнице «САНД», при соотношении масс мелющих шаров и порошковой смеси 15:1, в атмосфере вакуума, в циклическом режиме (20 мин - механосинтез, 40 мин охлаждение), с общей продолжительностью механосинтеза 3 ч. Полученную шихту подвергают горячему прессованию при температуре 1450°С, давлении 5 МПа, выдержке 1 ч. В результате получают композиционный материал, содержащий 95 масс.% карбосилицида, 3 масс.% оксида алюминия и 2 масс.% карбида титана. По данным рентгенофазового анализа примеси силицидов титана отсутствуют. Плотность полученного материала составляет 4,41 г/см3 (пористость - 2,2%), твердость - 9 ГПа.
Таким образом, заявляемое изобретение позволяет получить композиционный материал на основе карбосилицида титана с заданным содержанием примеси карбида титана, низкой пористостью, повышенной твердостью и износостойкостью, с использованием недорогого сырья, при снижении энергозатарат.
Класс B22F3/14 с одновременным проведением процесса уплотнения и спекания
Класс C22C1/05 смеси металлического порошка с неметаллическим
Класс C22C29/18 на основе силицидов
Класс B82B3/00 Изготовление или обработка наноструктур