способ электродуговой сварки
Классы МПК: | B23K9/18 дуговая сварка под флюсом B23K101/06 трубы |
Автор(ы): | Пермяков Игорь Львович (RU), Вятченников Владимир Владимирович (RU), Кардаев Николай Евгеньевич (RU), Челышев Валерий Валентинович (RU), Сазонов Алексей Николаевич (RU), Машинсон Израиль Зиновьевич (UA), Лючков Анатолий Демьянович (UA), Райчук Юрий Исаакович (UA) |
Патентообладатель(и): | ОАО "Волжский трубный завод" (RU) |
Приоритеты: |
подача заявки:
2009-01-20 публикация патента:
27.01.2011 |
Изобретение может быть использовано для изготовления спиральношовных сварных труб большого диаметра для магистральных и внутрипромысловых газонефтепроводов. Сварку внутренних спиральных швов труб производят под смесью флюса, содержащего плавленый флюс марки АН-47ДП по ГОСТ Р52222-2004 в количестве 75-92% и агломерированный флюс алюминатно-основного типа по стандарту EN760:1996 в количестве 8-25%. В качестве агломерированного флюса может быть использован флюс марки «Lincoln» 995N. Способ обеспечивает получение при скоростной многодуговой сварке труб, имеющих сварные соединения с плавным переходом валика усиления внутреннего шва в основной металл, обладающих высоким уровнем ударной вязкости при отрицательных температурах, что обусловливает повышение конструктивной прочности труб, уменьшение трудоемкости их подготовки к нанесению внутреннего покрытия, повышение его надежности. 1 з.п. ф-лы, 1 табл.
Формула изобретения
1. Способ электродуговой сварки под слоем флюса спирально-шовных труб большого диаметра, отличающийся тем, что сварку внутренних спиральных швов труб производят под смесью флюса, содержащего плавленый флюс марки АН-47ДП по ГОСТ Р52222-2004 в количестве 75-92% и агломерированный флюс алюминатно-основного типа по стандарту EN760:1996 в количестве 8-25%.
2. Способ по пп.1 и 2, отличающийся тем, что в качестве агломерированного флюса используют флюс марки «Lincoln» 995N.
Описание изобретения к патенту
Изобретение относится к трубному производству и может быть использовано для изготовления спиральношовных сварных труб большого диаметра для внутрипромысловых и магистральных газонефтепроводов, для трубопроводов атомных и тепловых электростанций, тепловых сетей и т.д.
Спиральношовные трубы имеют специфическую конфигурацию усиления внутреннего шва, характеризующуюся наличием так называемой «седловины», в результате чего формируется сварное соединение с неплавным переходом усиления шва в основной металл, угол перехода приближается к 90°. Образование седловины может иметь место и при сварке прямошовных труб.
При такой форме сварного соединения резко увеличивается концентрация напряжений в околошовной зоне. Поскольку трубы магистральных нефте- и газопроводов работают в условиях малоциклового нагружения и воздействия коррозионно-активных сред, концентрация напряжений в этой зоне приводит к снижению конструктивной прочности и эксплуатационной надежности трубопроводов.
Кроме того, наличие неплавного перехода валика усиления в основной металл приводит к образованию дефектов внутреннего гладкостного покрытия вблизи сварного шва и преждевременному разрушению труб в эксплуатации из-за коррозионного растрескивания. Поэтому перед нанесением покрытия необходимо проведение весьма трудоемкой специальной подготовки трубы, не всегда обеспечивающей стабильное качество покрытия.
Известен способ сварки низкоуглеродистых сталей под смесью плавленых флюсов АН-348А, ОСЦ-45 и др. и керамического флюса АНК-3 (Н.Н.Потапов «Основы выбора флюсов при сварке сталей». С.107. - М.: «Машиностроение», 1979 /1/).
Однако эта смесь неприменима при скоростной многодуговой сварке спиральношовных труб и не обеспечивает получение высокой ударной вязкости металла сварного шва.
Наиболее близким к заявляемому, принятым авторами за прототип, является способ электродуговой сварки спиральношовных труб по патенту RU 2334576 С2, 27.09.2008 /2/.
Однако в основе известного способа /2/ лежит только решение задачи по улучшению формы сварного соединения путем оптимизации величины проплавления внутреннего шва и высоты валика усиления шва без повышения его механических характеристик.
В основе предлагаемого изобретения лежит решение задачи по улучшению формирования внутреннего сварного соединения спиральношовных труб большого диаметра и повышения его механических свойств в условиях высокоскоростной многодуговой сварки труб путем оптимизации состава сварочных флюсов. При этом отличительным признаком заявляемого изобретения от известного по /2/ является подбор состава флюса, а существенной характеристикой данного признака является количественный состав смеси флюсов.
Поставленная задача решается тем, что в предлагаемом способе сварки под смесью плавленого и агломерированного флюса для сварки внутренних швов применяется смесь: плавленый флюс марки АН-47 ДП по ГОСТ Р52222-2004 и агломерированный флюс алюминатно-основного типа по стандарту EN 760:1996 «Флюсы для дуговой сварки под флюсом».
При этом доля плавленого флюса марки АН-47ДП должна быть в пределах 75-92% и агломерированного флюса алюминатно-основного типа - в пределах 25-8%.
Указанная комбинация плавленого и агломерированного флюсов и их соотношение получены опытным путем.
В проведенных экспериментах при сварке труб большого диаметра под смесью обычно применяющихся на трубных заводах плавленых флюсов марок АН-60, АН-65, АН-67 и ряда агломерированных флюсов, в том числе ESAB ОК 10.74, «Lincoln» 995N в различных соотношениях, внутренние спиральные швы формировались с образованием заметной седловины и неплавным переходом валика усиления шва к основному металлу.
Существенное улучшение формирования внутренних спиральных швов с плавным переходом валика усиления шва в основной металл в проведенных экспериментах имело место только при сварке труб под смесью (в определенном соотношении) плавленого флюса марки АН-47ДП по ГОСТ Р52222-2004 и агломерированного флюса марки «Lincoln» 995N, относящегося к группе алюминатно-основного типа по стандарту EN 760:1996.
При увеличении доли керамического флюса «Lincoln» 995N более 25% существенно ухудшалось формирование внутреннего спирального шва; при снижении его содержания ниже 8% уровень ударной вязкости металла шва был менее 50 Дж/см2 на образцах с острым надрезом при температуре испытания минус 20°С, что неприемлемо.
Техническим результатом использования предлагаемого изобретения является получение в условиях скоростной многодуговой сварки труб, внутренние спиральные швы которых формируются с образованием плавного перехода валика усиления шва в основном металле (угол перехода >120°) и высокий уровень ударной вязкости металла шва при отрицательных температурах. Это предопределяет повышение конструктивной прочности труб, уменьшение трудоемкости подготовки труб к нанесению внутреннего покрытия, улучшение его качества.
В соответствии с разработанным способом была изготовлена опытная партия спиральношовных труб размером 1420×21,7 мм из стали марки 10Г2ФБ класса прочности К60 (Х70). Базовый химический состав стали марки 10Г2ФБ приведен в таблице.
Химический состав стали марки 10Г2ФБ | |||||||||
Массовая доля химических элементов, %, не более | |||||||||
углерод | марганец | кремний | ванадий | ниобий | сера | фосфор | алюминий | титан | молибден |
0,12 | 1,85 | 0,50 | 0,12 | 0,08 | 0,006 | 0,020 | 0,02-0,05 | 0,035 | 0,30 |
Примечания: | |||||||||
1. Допускается массовая доля хрома, никеля, меди не более 0,3% каждого, их суммарная массовая доля не должна превышать 0,60%. | |||||||||
2. Суммарная массовая доля ниобия, ванадия и титана должна быть не более 0,16%. | |||||||||
3. Массовая доля азота в стали должна быть не более 0,010%. | |||||||||
4. При каждом снижении массовой доли углерода относительно максимальной на 0,01% допускается увеличение массовой доли марганца выше указанного максимума на 0,05%, но не более 2,00%. |
Сварку внутреннего шва проводили низкоуглеродистой низколегированной проволокой под смесью флюсов АН-47ДП - 90% и «Lincoln» 995N - 10%.
В трубах отмечено хорошее формирование внутреннего спирального шва: седловина не превышает 0,8 мм мм, валик усиления шва имеет плавный переход к основному металлу - угол перехода составляет >120°; ударная вязкость на образцах с острым надрезом по центру шва при температуре испытания минус 20°С KCV-20 60 Дж/см2.
Таким образом, изготовлены спиральношовные трубы большого диаметра из высокопрочной стали марки 10Г2ФБ, сварные соединения которых обеспечивают высокую эксплуатационную надежность трубопроводов.
Класс B23K9/18 дуговая сварка под флюсом