оптическое дифференцирующее наноустройство

Классы МПК:G06G7/18 для интегрирования или дифференцирования
B82B3/00 Изготовление или обработка наноструктур
Автор(ы):,
Патентообладатель(и):Каменский Владислав Валерьевич (RU),
Соколов Сергей Викторович (RU)
Приоритеты:
подача заявки:
2009-09-30
публикация патента:

Изобретение относится к средствам вычислительной техники и может быть использовано в оптических устройствах обработки информации при разработке и создании оптических вычислительных машин и приемопередающих устройств. Оптическое дифференцирующее наноустройство состоит из двух источников постоянного оптического сигнала, двух входных оптических нановолоконных Y-разветвителей, двух оптических нановолоконных объединителей, оптического нановолоконного N-выходного разветвителя, оптического N-входного нановолоконного объединителя, нановолокна и двух телескопических нанотрубок. Технический результат - обеспечение дифференцирования как когерентных, так и некогерентных оптических сигналов с быстродействием, потенциально возможным для оптических процессорных схем, а также наноразмерного исполнения устройства. 1 ил. оптическое дифференцирующее наноустройство, патент № 2412481

оптическое дифференцирующее наноустройство, патент № 2412481

Формула изобретения

Оптическое дифференцирующее наноустройство, содержащее два источника постоянного оптического сигнала, входной оптический нановолоконный Y-разветвитель, выходной оптический нановолоконный Y-разветвитель, оптический нановолоконный N-выходной разветвитель, две телескопические нанотрубки, - внутреннюю и внешнюю, два оптических нановолоконных объединителя, оптический N-входной нановолоконный объединитель, оптическое нановолокно как оптическую линию задержки, входом устройства является вход входного оптического нановолоконного Y-разветвителя, выход первого источника постоянного оптического сигнала подключен ко входу оптического нановолоконного N-выходного Y-разветвителя, а выход второго источника постоянного оптического сигнала подключен к первому входу первого оптического нановолоконного объединителя, выходы оптического нановолоконного N-выходного Y-разветвителя оптически связаны со входами оптического нановолоконного N-входного объединителя, телескопические нанотрубки расположены между выходами первого и второго оптических нановолоконных объединителей по оси распространения их выходных оптических сигналов, в среднем (исходном) положении внутренняя нанотрубка разрывает половину оптических связей между выходами N-выходного оптического нановолоконного Y-разветвителя и входами N-входного оптического нановолоконного объединителя, первый выход входного оптического нановолоконного Y-разветвителя подключен ко входу оптического нановолокна, а второй выход входного оптического нановолоконного Y-разветвителя подключен ко второму входу первого оптического нановолоконного объединителя, выход оптического нановолокна подключен к первому входу второго оптического нановолоконного объединителя, выход оптического нановолоконного N-входного объединителя подключен ко входу выходного оптического нановолоконного Y-разветвителя, второй выход выходного оптического нановолоконного Y-разветвителя подключен ко второму входу второго входного оптического нановолоконного объединителя, а первый выход выходного оптического нановолоконного Y-разветвителя является выходом устройства.

Описание изобретения к патенту

Изобретение относится к средствам вычислительной техники и может быть использовано в оптических устройствах обработки информации при разработке и создании оптических вычислительных машин и приемопередающих устройств.

Известным устройством дифференцирования является оптический дифференциатор [С.В.Соколов, П.С.Шевчук, С.В.Бабкин, В.А.Панкратов. Перспективные устройства обработки и защиты информации для помехозащищенных АСУ. - М.: Радио и связь, 2002. - 224 с.: ил. 39, стр.133].

Недостатками данного устройства являются необходимость применения сложного оптического фазового модулятора и невозможность дифференцирования некогерентных оптических сигналов, а также невозможность реализации в наноразмерном исполнении.

Наиболее близким по техническому исполнению к предложенному устройству является оптический дифференциатор, состоящий из оптического разветвителя, оптической линии задержки, оптического фазового модулятора, оптического объединителя и приемного транспаранта [Патент РФ № 2159461, 2000. - БИ № 32].

Недостатками данного устройства являются сложность и невозможность дифференцирования некогерентных оптических сигналов, а также невозможность реализации в наноразмерном исполнении.

Заявленное устройство направлено на решение задачи дифференцирования как когерентных, так и некогерентных оптических сигналов с быстродействием, потенциально возможным для оптических процессорных схем, а также задачи наноразмерного исполнения устройства и упрощения его конструкции.

Поставленная задача возникает при разработке и создании оптических вычислительных наномашин или приемо-передающих наноустройств, обеспечивающих обработку информации в тера- и гигагерцовом диапазонах.

Заявленное устройство строится на основе оптических нановолокон, варианты технического исполнения которых описаны в [Оптика наноструктур / Под редакцией А.В.Федорова: СПб. «Недра», 2005 г.; Krenn J.R., Dereux A., Weeber J.C. et al. Squeezing the optical near-field zone by plasmon coupling of metal nanoparticles. Physical Review Letters, 1999, 82, 12, 2590], и телескопических нанотрубок, под которыми понимается пара вложенных одна в другую нанотрубок [Multiwalled Carbon Nanotubes as Gigahertz Oscillators / Quanshui Zheng, Qing Jiang // Phys. Rev. Lett. 88, 045503, 28 January, 2002].

Сущность изобретения состоит в том, что устройство содержит два источника постоянного оптического сигнала, входной оптический нановолоконный Y-разветвитель, выходной оптический нановолоконный Y-разветвитель, оптический нановолоконный N-выходной разветвитель, две телескопические нанотрубки, - внутреннюю и внешнюю, два оптических нановолоконных объединителя, оптический N-входной нановолоконный объединитель, оптическое нановолокно как оптическую линию задержки, входом устройства является вход входного оптического нановолоконного Y-разветвителя, выход первого источника постоянного оптического сигнала подключен к входу оптического нановолоконного N-выходного Y-разветвителя, а выход второго источника постоянного оптического сигнала подключен к первому входу первого оптического нановолоконного объединителя, выходы оптического нановолоконного N-выходного Y-разветвителя оптически связаны с входами оптического нановолоконного N-входного объединителя, телескопические нанотрубки расположены между выходами первого и второго оптических нановолоконных объединителей по оси распространения их выходных оптических сигналов, в среднем (исходном) положении внутренняя нанотрубка разрывает половину оптических связей между выходами N-выходного оптического нановолоконного Y-разветвителя и входами N-входного оптического нановолоконного объединителя, первый выход входного оптического нановолоконного Y-разветвителя подключен к входу оптического нановолокна, а второй выход входного оптического нановолоконного Y-разветвителя подключен ко второму входу первого оптического нановолоконного объединителя, выход оптического нановолокна подключен к первому входу второго оптического нановолоконного объединителя, выход оптического нановолоконного N-входного объединителя подключен к входу выходного оптического нановолоконного Y-разветвителя, второй выход выходного оптического нановолоконного Y-разветвителя подключен ко второму входу второго входного оптического нановолоконного объединителя, а первый выход выходного оптического нановолоконного Y-разветвителя является выходом устройства.

На фиг.1 представлена функциональная схема оптического дифференцирующего наноустройства.

Устройство состоит из двух источников постоянного оптического сигнала 1i, i=1,2, входного оптического нановолоконного Y-разветвителя 21 выходного оптического нановолоконного Y-разветвителя 22, оптического нановолоконного N-выходного разветвителя 3, двух телескопических нанотрубок 4i, i=1,2 , (41 - внутренняя нанотрубка, 42 - внешняя нанотрубка), двух оптических нановолоконных объединителей 5 i, i=1,2, оптического N-входного нановолоконного объединителя 6, оптического нановолокна 7, выполняющего функцию оптической линии задержки.

Выходом устройства является первый выход выходного оптического нановолоконного Y-разветвителя 2 2(у').

Выход первого источника постоянного оптического сигнала 11 подключен к входу оптического нановолоконного N-выходного Y-разветвителя 3, а выход второго источника постоянного оптического сигнала 12 подключен к первому входу оптического нановолоконного объединителя 5 1. Выходы оптического нановолоконного N-выходного Y-разветвителя 3 оптически связаны с входами оптического нановолоконного N-входного объединителя 6.

Телескопические нанотрубки 4 1, 42 расположены между выходами первого и второго оптических нановолоконных объединителей 51 и 5 2 по оси распространения их выходных оптических сигналов. Под воздействием разности давлений световых потоков (разность оптических мощностей 1-5 Вт создает разность давлений 5-15 нН), внутренняя нанотрубка 41 будет перемещаться в сторону оптического потока с меньшей интенсивностью (при этом необходимо иметь в виду, что минимально необходимое давление для перемещения нанотрубки составляет аттоньютоны [Multiwalled Carbon Nanotubes as Gigahertz Oscillators / Quanshui Zheng, Qing Jiang // Phys. Rev. Lett. 88, 045503, 28 January, 2002]).

В крайнем левом положении внутренняя нанотрубка 41 разрывает оптические связи между выходами N-выходного оптического нановолоконного Y-разветвителя 3 и входами N-входного оптического нановолоконного объединителя 6.

Первый выход входного оптического нановолоконного Y-разветвителя 21 подключен к входу оптического нановолокна 7, а второй выход входного оптического нановолоконного Y-разветвителя 21 подключен ко второму входу первого оптического нановолоконного объединителя 5 1. Выход оптического нановолокна 7 подключен к первому входу второго оптического нановолоконного объединителя 5 2.

Выход оптического нановолоконного N-входного объединителя 6 подключен к входу выходного оптического нановолоконного Y-разветвителя 22. Второй выход выходного оптического нановолоконного Y-разветвителя 22 подключен ко второму входу второго входного оптического нановолоконного объединителя 52.

Устройство работает следующим образом.

С выхода источника постоянного оптического сигнала 1 сигнал с интенсивностью N·K усл. ед. (N - количество выходов N-выходного оптического нановолоконного разветвителя 3), поступает на вход N-выходного оптического нановолоконного разветвителя 3, с каждого выхода которого снимается постоянный оптический сигнал с интенсивностью К усл. ед.

До подачи на вход «у» оптического сигнала устройство находится в исходном (начальном) состоянии - внутренняя нанотрубка 4 1 находится в среднем (исходном) положении. С левой стороны на нанотрубку 41 действует сила давления светового потока интенсивности I0=К/4 с выхода первого оптического объединителя 52, а с правой - сила давления светового потока с интенсивностью К/4, проходящего от источника постоянного оптического сигнала 1 через N-выходной оптический нановолоконный разветвитель 3, N-входной оптический нановолоконный объединитель 6 и через второй оптический нановолоконный объединитель 5 2. Интенсивность оптического сигнала в исходном положении на выходе у' будет равна I0=К/4.

Пусть на вход устройства «у» подан оптический сигнал, интенсивность которого в моменты времени t1 и t 2=t1+dt равна I(t1) и I(t2 ) соответственно.

Т.к. оптический сигнал, поданный на вход оптического нановолокна 7 в момент времени t1 , поступит на выход оптического нановолокна 7 через время dt - в момент времени t2, то на внутреннюю нанотрубку 41 в момент времени t2 будет действовать разность световых давлений F1 и F2, пропорциональных интенсивностям световых потоков на первом выходе входного нановолоконного Y-разветвителя 21-I(t2), и на выходе второго оптического нановолоконного объединителя 52~I(t 1): Fj~I(tj).

Для определенности условимся, что интенсивность оптического сигнала I(t2)>I(t1). Тогда внутренняя нанотрубка 41 начнет перемещаться вправо, интенсивность светового потока на выходе N-входного оптического нановолоконного объединителя 6 начнет увеличиваться пропорционально величине перемещения «X» внутренней нанотрубки 41. Т.к. длины правой и левой частей внутренней нанотрубки 41 составляют единицы микрон, а диаметр оптических нановолокон - единицы нанометров, то изменение величины перемещения «X» для ясности последующего изложения можно считать непрерывным (дискретный характер изменения «X» не вносит никаких принципиальных ограничений в принцип действия устройства) - интенсивность светового потока на выходе N-входного оптического нановолоконного объединителя 6 будет равна «К·Х». Оптический сигнал с интенсивностью «К·Х» поступает далее на вход выходного оптического нановолоконного Y-разветвителя 22, где, разделившись на два, проходит на выход устройства «у'» и на второй вход второго оптического нановолоконного объединителя 52. Оптический сигнал с интенсивностью «К·Х/2» на втором входе входного оптического нановолоконного объединителя 52 формирует сигнал отрицательной обратной связи, препятствующий, совместно с сигналом с выхода оптического нановолокна 7 (в момент времени t2 это будет входной сигнал I(t 1), задержанный на dt), движению внутренней нанотрубки 41 вправо, - скорость ее движения уменьшается, изменение величины перемещения «X» замедляется.

По окончании переходного процесса (на момент остановки внутренней нанотрубки 41) величина перемещения «X» будет равна

оптическое дифференцирующее наноустройство, патент № 2412481

(Время переходного процесса определяется массой внутренней нанотрубки 41(оптическое дифференцирующее наноустройство, патент № 2412481 10-15-10-16 г), силой трения при ее движении (оптическое дифференцирующее наноустройство, патент № 2412481 10-9н), интенсивностью «К» постоянного оптического сигнала, интенсивностью I(t2), I(t 1) входных оптических сигналов и составляет оптическое дифференцирующее наноустройство, патент № 2412481 10-9-10-10с).

Таким образом, на выходе устройства «у'» формируется сигнал Iвых, превышение (или, в противном случае, снижение) интенсивности которого по отношению к постоянному уровню I0 пропорционально дифференциалу поданного оптического сигнала за время dt:

оптическое дифференцирующее наноустройство, патент № 2412481

Аналогично происходит процесс дифференцирования оптических сигналов, когда интенсивность I(t1)>I(t 2) (движение внутренней нанотрубки 41 при этом происходит уже влево).

Если на вход устройства подан постоянный оптический сигнал, то на выходе устройства «у'» будет постоянный оптический сигнал с интенсивностью I0 =К/4.

Аналогично происходит процесс дифференцирования оптических сигналов, когда интенсивность I(t1)>I(t 2) (движение внутренней нанотрубки 41 при этом происходит уже влево).

Простота данного оптического дифференцирующего устройства и возможность наноразмерного исполнения делают его весьма перспективным при разработке и создании оптических вычислительных наномашин и приемо-передающих наноустройств.

Класс G06G7/18 для интегрирования или дифференцирования

способ и устройство двухтактного интегрирования с компенсацией погрешностей -  патент 2523939 (27.07.2014)
способ и устройство двухтактного интегрирования -  патент 2521305 (27.06.2014)
дифференцирующее устройство -  патент 2479024 (10.04.2013)
функциональная структура процедуры логического дифференцирования d/dn позиционных аргументов [mj]f(2n) с учетом их знака m(±) для формирования позиционно-знаковой структуры ±[mj]f(+/-)min с минимизированным числом активных в ней аргументов (варианты) -  патент 2428738 (10.09.2011)
способ преобразования позиционно-знаковых аргументов ±[nj]f(+/-) в структуру аргументов ±[nj]f(+/-)min с минимизированным числом активных аргументов и функциональная структура для его реализации (варианты русской логики) -  патент 2417432 (27.04.2011)
способ избирательного логического дифференцирования d*/dn позиционных аналоговых сигналов ±[mj]f(2n) с учетом их логического знака m(±) и функциональная структура для его реализации (варианты русской логики) -  патент 2417431 (27.04.2011)
способ логического дифференцирования d/dn позиционных аналоговых сигналов ±[ni]f(2n) с учетом их логического знака n(±) (варианты русской логики) -  патент 2417430 (27.04.2011)
функциональная структура процедуры логического дифференцирования d/dn аналоговых сигналов ±[ni]f(2n) с учетом их логического знака n(±) (варианты) -  патент 2413988 (10.03.2011)
способ логического дифференцирования аналоговых сигналов, эквивалентных двоичному коду, и устройство для его реализации -  патент 2375749 (10.12.2009)
функциональная структура избирательного логического дифференцирования аргументов формата двоичной системы f(2n) -  патент 2373640 (20.11.2009)

Класс B82B3/00 Изготовление или обработка наноструктур

Наверх