способ получения наноразмерных порошков индивидуальных оксидов лантаноидов

Классы МПК:B22F9/16 с использованием химических процессов
C01F17/00 Соединения редкоземельных металлов, те скандия, иттрия, лантана или группы лантаноидов
B82B3/00 Изготовление или обработка наноструктур
Автор(ы):, , , , ,
Патентообладатель(и):Открытое акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности" ОАО "ГИРЕДМЕТ" (RU)
Приоритеты:
подача заявки:
2008-12-03
публикация патента:

Изобретение относится к гидрометаллургии редкоземельных металлов, а именно к получению кристаллических нанопорошков оксидов лантаноидов. Способ получения порошков индивидуальных оксидов лантаноидов включает осаждение соли лантаноида из азотнокислых растворов с концентрацией 30-50 г/л по оксиду лантаноида твердой щавелевой кислотой при непрерывном введении полиакриламида в виде раствора с концентрацией 0,005-0,015% в количестве 5,0-10,0 мг на 1,0 кг оксида лантаноида, отделение ее, промывку, сушку при 60-65°С до остаточной влажности 5-6%, прокаливание полученного осадка в течение 2,0-2,2 часов в интервале температур 380-825°С в зависимости от свойств индивидуальных лантаноидов. Обеспечивается получение порошков оксидов лантаноидов с наноразмерной крупностью частиц, однородного гранулометрического состава. 2 з.п. ф-лы, 1 табл.

Формула изобретения

1. Способ получения порошков индивидуальных оксидов лантаноидов, включающий осаждение соли лантаноида из азотнокислых растворов, ее отделение, промывку, сушку, термообработку с получением оксида лантаноида, отличающийся тем, что осаждение соли осуществляют из азотнокислых растворов с концентрацией 30-50 г/л по оксиду лантаноида твердой щавелевой кислотой при непрерывном введении полиакриламида в виде раствора с концентрацией 0,005-0,015% в количестве 5,0-10,0 мг на 1,0 кг оксида лантаноида, при этом в качестве соли лантаноида осаждают оксалат лантаноида, термообработку которого осуществляют в течение 2,0-2,2 ч в интервале температур 380-825°С в зависимости от свойств индивидуальных лантаноидов.

2. Способ по п.1, отличающийся тем, что сушку ведут при 60-65°С до остаточной влажности 5-6%.

3. Способ по п.1, отличающийся тем, что используют полиакриламид с общей формулой способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 , где n ~ 100000

в неионной форме при молекулярной массе (5÷7)·106.

Описание изобретения к патенту

Изобретение относится к гидрометаллургии редкоземельных металлов, а именно к получению нанопорошков оксидов лантаноидов, которые являются перспективным материалом, находящим применение в различных областях промышленности, вследствие уникальных физико-химических свойств.

Например, для производства твердотельных лазеров необходима прозрачная поликристаллическая керамика, используемая в активных элементах твердотельных лазеров на основе оксида иттрия, легированного иттербием. Для ее создания требуются исходные оксиды с крупностью частиц <300 нм. Соосаждением твердого раствора РЗМ получена керамика с размером частиц <100 нм (Journal of the European Ceramic Society, 2007, v 27, p.1991-1998).

Мощные волоконные лазеры, созданные с использованием в качестве легирующих добавок РЗМ, позволяют получить излучение в диапазоне 1,07-1,08 мкм при введении иттербия, при введении эрбия длина волны 1,54-1,56 мкм, что существенно расширяет технологические возможности использования волоконных лазеров, в частности для сварки [J. Materials and Design 28(2007), р.1231-1237].

Диоксид церия используется в качестве основного компонента полирующих смесей и абразивов, в том числе:

- для химико-механической обработки поверхности кремниевых пластин в микроэлектронике (Converting Ceria Polyhedral Nanoparticles into Single Crystal Nanospheres // Science, 2006. v/312. № 5779; p.1504-1508);

- для полировки оптических покрытий и обесцвечивания стекол, для увеличения мощности твердотельных лазеров непрерывного излучения (Int. Science J.Altem. Energy E col. 2005. № 9. p.29);

- в составе защитных покрытий, поглощающих УФ-излучение (J/Non-Cryst. Solids. 1990. v.121. р.315-318), и т.д.

Мелкодисперсные оксиды лантаноидов находят применение в производстве оптической керамики.

Известен способ получения порошков диоксида церия из растворов нитрата церия в присутствии азодикарбонамида (AZO) и тетраметиламмония гидроксида (ТМАОН). Соотношение Се(NO3)3 ·9H2O: AZO: ТМАОН = 1:1:1.

Растворы, содержащие смесь компонентов, обрабатывали ультразвуком частотой 20 кГц в течение 3 часов при комнатной температуре. В течение облучения температура реакционной смеси достигала 80°С. Полученную суспензию центрифугировали, осадок промывали и сушили в вакууме [Journal of Colloid and Interface Science, 246, 78-84 (2002)].

Недостатком способа является то, что полученные порошки CeO2 сильно агрегированы. Добавление ТМАОН в реакционную смесь и обработка ее ультразвуком не снижает агрегирования частиц и не позволяет получать кристаллическую структуру порошка с наноразмерной крупностью частиц.

Известен способ получения порошка диоксида церия из растворов солей в присутствии мочевины. В качестве исходных компонентов использовали растворы, содержащие сульфат церия (концентрация раствора 0,1 М/дм3), сульфат аммония и мочевину (концентрация 0,4 М/дм3), при определенных соотношениях. Данную смесь в тефлоновом сосуде помещали в термостат с температурой 120-180°С при перемешивании в течение 5 часов. Полученный осадок отмывали и сушили на воздухе, затем прокаливали при температуре до 900°С на воздухе.

При осаждении в присутствии мочевины формируются мелкодисперсные частицы, которые представляют собой сильно аморфизированные порошки диоксида церия, требующие длительной высокотемпературной обработки, которая приводит к агрегации частиц. Получаемый после термообработки порошок характеризуется большим различием в размере частиц диоксида церия, неоднородностью по составу.

Кроме того, порошок также содержит гидратированные комплексы с молекулами воды и гидроксильными группами [J. Am. Ceramic. Soc., 82 [3] 786-788 (1999)].

Способ обеспечивает получение только аморфных порошков.

Известен способ получения порошка индивидуальных оксидов лантаноидов, включающий разбавление нитрата редкоземельного элемента спиртом до молярного соотношения спирта и нитрата редкоземельного элемента 20:1-300:1 с последующим сжиганием полученного раствора в емкости или впрыскиванием его, получение порошка прекурсора, который затем собирают и подвергают термообработке при температуре 400-1200°С с получением оксида лантаноида, который затем размалывают и получают нанопорошок оксида редкоземельного элемента (см. CN № 101113009А, C01F 17/00, опубл. 30.01.2008). Способ принят за прототип.

Недостатком способа является невозможность получить порошки однородного гранулометрического состава. Кроме того, способ не может быть реализован в промышленном масштабе из-за его пожароопасности.

Технической задачей, решаемой заявляемым изобретением, является создание технологии получения наноразмерных порошков оксидов лантаноидов: лантана, церия, празеодима, неодима, самария, европия, гадолиния, тербия, диспрозия, гольмия, эрбия, тулия, иттербия, лютеция однородного гранулометрического состава.

Техническим результатом заявленного изобретения является получение порошков оксидов лантаноидов с наноразмерной крупностью частиц, однородного гранулометрического состава.

Технический результат достигается тем, что в способе получения порошков индивидуальных оксидов лантаноидов, включающем осаждение соли лантаноида из азотнокислых растворов, ее отделение, промывку, сушку, термообработку с получением оксида лантаноида, согласно изобретению осаждение осуществляют из азотнокислых растворов с концентрацией 30-50 г/л по оксиду лантаноида твердой щавелевой кислотой при непрерывном введении полиакриламида в виде раствора с концентрацией 0,005-0,015% в количестве 5,0-10,0 мг на 1,0 кг оксида лантаноида, при этом в качестве соли лантаноида осаждают оксалат лантаноида, термообработку которого осуществляют в течение 2,0-2,2 часов в интервале температур 380-825°С в зависимости от свойств индивидуальных лантаноидов, сушку ведут при 60-65°С до остаточной влажности 5-6% и используют полиакриламид с общей формулой способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 ,

где n ~ 100000

в неионной форме при молекулярной массе (5÷7)·106.

Сущность способа заключается в том, что совокупность заявленных приемов, а именно использование для осаждения солей лантаноидов твердой щавелевой кислоты, осаждение оксалатов лантаноидов при одновременном введении раствора полиакриламида, приводит к получению осадка оксалата со структурой, обеспечивающей при последующей его термообработке (прокаливании) получение порошка индивидуальных оксидов лантаноидов с наноразмерной крупностью частиц. Одновременное воздействие твердой щавелевой кислоты и полиакриламида приводит к ускорению образования оксалата с предотвращением агломерирования, при этом вводимый полиакриламид является полимерным регулятором кристаллизации, который ускоряет осаждение образовавшихся оксалатов, а также предотвращает возможное включение в кристаллы оксалатов посторонних ионов, в том числе гидроксильных. В результате такого совместного взаимодействия образующиеся оксалаты сразу выпадают в осадок, не претерпевая укрупнения частиц. После термообработки получают кристаллические порошки кубической сингонии с наноразмерными частицами однородного фракционного и химического состава.

Наиболее технологично заявленный способ получения наноразмерных порошков оксидов лантаноидов следует осуществлять при заявленных концентрациях используемых растворов и при заявленных параметрах режимов прокаливания. Следует учесть, что в зависимости от свойств самих лантаноидов (а именно температуры образования оксидов лантаноидов) следует в заявленном интервале температур выбирать температуру термообработки для каждого индивидуального оксида лантаноида. А также в качестве полимерного регулятора кристаллизации следует использовать полиакриламид (ПАА) с общей формулой

способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 ,

где n ~ 100000

в неионной форме при молекулярной массе (5÷7)·106.

Обоснование параметров

При увеличении концентрации исходного азотнокислого раствора лантаноида выше 50 г/л (по оксиду металла) увеличивается крупность образующихся оксалатов и затем оксидов лантаноидов.

При уменьшении концентрации исходного азотнокислого раствора лантаноида ниже 30 г/л падает производительность самого процесса осаждения оксалата.

Осаждение оксалатов лантаноидов следует проводить при непрерывном введении регулятора кристаллизации - раствора полиакриламида. При этом увеличение концентрации раствора полиакриламида более 0,015% и увеличение количества вводимого полиакриламида более 10 мг/кг оксида металла будет способствовать агрегации частиц. Уменьшение концентрации полиакриламида менее 0,005% и введение ПАА меньше 5 мг/кг оксида приводит к снижению регулирующего действия полимера на размер зерна и рост кристаллов также увеличивается.

В заявленных условиях концентрации растворов температура прокаливания оксалатов лантаноидов ниже, чем в прототипе, и определяется свойствами получаемых оксидов лантаноидов. Так, для получения оксида церия температура прокаливания не выше 380°С. Увеличение температуры и продолжительности прокаливания более 2,2 часов приводит к укрупнению частиц, а уменьшение температуры и времени прокаливания менее 2,0 часов снижает выход в оксид церия.

Для получения оксида лантана температура прокаливания не выше 825°С. Увеличение температуры и продолжительности прокаливания более 2,2 часов приводит также к укрупнению частиц, а уменьшение температуры и времени прокаливания менее 2,0 часов снижает выход в оксид лантана.

Полученные осадки оксалатов фильтровали, сушили на воздухе и затем подвергали термообработке в течение 2 часов при температуре от 825-380°С в зависимости от индивидуального лантаноида. Параметры термообработки соединений лантаноидов были выбраны, исходя из данных термографического анализа оксалатов.

Способ иллюстрируется примерами.

Пример 1

Для осаждения оксалата индивидуального лантаноида в азотнокислый раствор с концентрацией 30-50 г/л (по Ln2O3) и рН 2 вводили твердую щавелевую кислоту в количестве 1,2 от стехиометрии. Осаждение проводили из азотнокислого раствора с температурой 60°С±10°С и интенсивном перемешивании при непрерывном добавлении неионогенного полиакриламида (ПАА), формулы способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 ,

где n ~ 100000,

молекулярная масса ПАА составляет (5÷7)·106. ПАА вводили в реакционную смесь в виде раствора в дистиллированной воде с концентрацией 0,01% мас., количество ПАА, которое рассчитывали, исходя из веса Ln2O3, составляло 5,0÷10,0 мг/кг Ln2O3. Сушку проводили до остаточной влажности 5% при температуре 60°С. Осадки оксалатов прокаливали в течение 2,0-2,2 часов при температуре 380-825°С в соответствии с данными термограммы соответствующего оксида лантаноида.

Полученный порошок имеет кристаллическую структуру со средним размером зерна - 2,8-26 нм, в зависимости от порядкового номера, с однородным фракционным составом.

Результаты осуществления способа, полученные для ряда лантаноидов при различных параметрах, представлены в таблице.

РЗМ Концентрация нитратов лантаноидов, г/л Количество ПАА, мг/кг La2O3 Концентрация ПАА, % Крупность порошка оксидов, нм Температура прокаливания, °С
La50 100,01 23825
способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 30 50,01 25825
способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 40 110,012 28850
способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 60 100,005 35825
способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 20 50,015 29825
Yb 305 0,0113 570
способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 50 100,01 12,7570
способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 60 50,005 17580
способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 20 50,01 15,4570
способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 30 110,01 14,6570
способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 50 40,012 16560
Y 5010 0,0115 650
Tm 50 50,01 12700
Dy 306 0,0118 710
Er 30 70,01 9520
Eu 508 0,0126 620
Pe 50 50,01 2,8380
способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 30 100,01 3,1400
способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 70 100,01 12440
способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 50 110,01 15,1440
способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 30 100,015 15400
способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 80 50,01 14400
способ получения наноразмерных порошков индивидуальных оксидов   лантаноидов, патент № 2414330 50 80,009 10380

Таким образом, заявленное изобретение позволяет получать порошки оксидов лантаноидов и иттрия кристаллической структуры и с наноразмерной крупностью частиц от 2,8-3,1 нм для оксида церия до 23-25 нм для оксида лантана.

Кроме того, способ имеет меньшую энергоемкость за счет того, что процесс термообработки проводят при более низкой температуре.

Таким образом, заявленное изобретение позволяет получить следующий положительный эффект:

1) получить наноразмерные порошки оксидов лантаноидов кристаллической структуры кубической сингонии;

2) получить наноразмерные порошки оксидов лантаноидов с однородным фракционным и химическим составом;

3) снизить энергоемкость процесса.

Класс B22F9/16 с использованием химических процессов

способ получения порошков нитрида урана -  патент 2522814 (20.07.2014)
способ получения нитрида галлия -  патент 2516404 (20.05.2014)
способ получения наноразмерного порошка железоиттриевого граната -  патент 2509625 (20.03.2014)
способ получения порошков фторсульфидов редкоземельных элементов lnsf -  патент 2500502 (10.12.2013)
способ получения нанодисперсного порошка карбида вольфрама (варианты) -  патент 2497633 (10.11.2013)
композиционный нанопорошок и способ его получения -  патент 2493938 (27.09.2013)
способ получения нанопорошка карбида кремния -  патент 2493937 (27.09.2013)
способ получения нанодисперсного порошка кобальта (варианты) -  патент 2492029 (10.09.2013)
способ получения наноразмерного порошка кобальта -  патент 2483841 (10.06.2013)
наноструктура ревитализанта и способ получения устойчивой формы наноструктуры ревитализанта -  патент 2480311 (27.04.2013)

Класс C01F17/00 Соединения редкоземельных металлов, те скандия, иттрия, лантана или группы лантаноидов

способ кристаллизации фосфатов рзм из растворов экстракционной фосфорной кислоты -  патент 2529228 (27.09.2014)
способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты при переработке хибинских апатитовых концентратов -  патент 2528692 (20.09.2014)
новый желтый неорганический пигмент из самария и соединений молибдена и способ его получения -  патент 2528668 (20.09.2014)
способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена -  патент 2526981 (27.08.2014)
способ извлечения редкоземельных металлов из фосфогипса -  патент 2526907 (27.08.2014)
способ извлечения редкоземельных элементов из экстракционной фосфорной кислоты -  патент 2525947 (20.08.2014)
способ извлечения редкоземельных элементов из гидратно-фосфатных осадков переработки апатита -  патент 2524966 (10.08.2014)
способ очистки фосфатно-фторидного концентрата рзэ -  патент 2523319 (20.07.2014)
композиция на основе оксидов циркония, церия и другого редкоземельного элемента при сниженной максимальной температуре восстанавливаемости, способ получения и применение в области катализа -  патент 2518969 (10.06.2014)
способ выделения гадолиния экстракцией фосфорорганическими соединениями -  патент 2518619 (10.06.2014)

Класс B82B3/00 Изготовление или обработка наноструктур

Наверх