жаропрочная сталь для паросиловых установок и энергоблоков со сверхкритическими параметрами пара
Классы МПК: | C22C38/32 с бором |
Автор(ы): | Горынин Игорь Васильевич (RU), Орыщенко Алексей Сергеевич (RU), Карзов Георгий Павлович (RU), Филимонов Герман Николаевич (RU), Бережко Борис Иванович (RU), Теплухина Ирина Владимировна (RU), Повышев Игорь Анатольевич (RU) |
Патентообладатель(и): | ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ "ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ "ПРОМЕТЕЙ" (ФГУП "ЦНИИ КМ "ПРОМЕТЕЙ") (RU) |
Приоритеты: |
подача заявки:
2009-09-29 публикация патента:
20.03.2011 |
Изобретение относится к области металлургии, а именно к составам конструкционных сталей, используемых в судовом и энергетическом машиностроении при производстве различного теплообменного оборудования паросиловых установок и энергоблоков, работающих при сверхкритических параметрах пара. Жаропрочная сталь содержит углерод, кремний, марганец, хром, молибден, ванадий, ниобий, алюминий, вольфрам, азот, бор, иттрий, водород, кальций, серу, фосфор и железо при следующем соотношении компонентов, мас.%: углерод 0,01-0,15, кремний 0,2-0,5, марганец 0,2-0,5, хром 10,0-12,0, молибден 0,4-0,8, вольфрам 0,4-1,2, ванадий 0,1-0,3, ниобий 0,02-0,06, алюминий 0,01-0,05, азот 0,01-0,05, бор 0,001-0,005, иттрий 0,002-0,01, водород 0,0005-0,003, кальций 0,001-0,005, сера 0,005-0,01, фосфор 0,005-0,02, железо остальное. Суммарное содержание углерода и азота (C+N) не превышает 0,16%, суммарное содержание серы и фосфора (S+P) не превышает 0,025%, а «молибденовый эквивалент», определяемый соотношением (Mo+0,5W), не превышает 1,0%. Повышается эксплуатационная надежность и общий ресурс работы современного паросилового оборудования тепловых энергоблоков и электростанций за счет повышения стабильности комплекса основных физико-механических свойств. 2 табл.
Формула изобретения
Жаропрочная сталь для паросиловых установок и энергоблоков со сверхкритическими параметрами пара, содержащая углерод, кремний, марганец, хром, молибден, ванадий, ниобий, серу, фосфор и железо, отличающаяся тем, что она дополнительно содержит алюминий, вольфрам, азот, бор, иттрий, водород и кальций при следующем соотношении компонентов, мас.%:
углерод | 0,01-0,15 |
кремний | 0,2-0,5 |
марганец | 0,2-0,5 |
хром | 10,0-12,0 |
молибден | 0,4-0,8 |
вольфрам | 0,4-1,2 |
ванадий | 0,1-0,3 |
ниобий | 0,02-0,06 |
алюминий | 0,01-0,05 |
азот | 0,01-0,05 |
бор | 0,001-0,005 |
иттрий | 0,002-0,01 |
водород | 0,0005-0,003 |
кальций | 0,001-0,005 |
сера | 0,005-0,01 |
фосфор | 0,005-0,02 |
железо | остальное, |
при этом «молибденовый эквивалент», определяемый соотношением (Mo+0,5W), не превышает 1,0%, суммарное содержание углерода и азота (C+N) не превышает 0,16%, суммарное содержание серы и фосфора (S+P) не превышает 0,025%.
Описание изобретения к патенту
Изобретение относится к металлургии конструкционных сталей и сплавов, содержащих в качестве основы железо с заданным соотношением легирующих и примесных элементов, и предназначено для использования в судовом и энергетическом машиностроении при производстве различного теплообменного оборудования паросиловых установок и энергоблоков, работающих при сверхкритических параметрах пара.
Известны металлические конструкционные материалы, применяемые в энергомашиностроительных отраслях промышленности (например, хромистые стали марок 15Х11МФБ, 12Х11В2МФ и 15Х12ВНМФ, а также другие аналоги), указанные в научно-технической и патентной литературе [1-8]. Однако известные стали не обеспечивают требуемого уровня и стабильности основных физико-механических и служебных характеристик, что снижает работоспособность и промышленную безопасность теплообменного оборудования, работающего в условиях длительной эксплуатации и воздействия пара высоких параметров.
Наиболее близкой к заявляемой композиции по базовому химическому составу и функциональному назначению компонентов является высокохромистая сталь мартенсито-ферритного класса марки 15Х11МФБ (ЭИ-756) [1], содержащая в своем составе легирующие и примесные элементы в следующем соотношении, в мас.%:
углерод | 0,12-0,18 |
кремний | 0,55 |
марганец | 0,6-1,2 |
хром | 10,0-12,0 |
никель | 0,5-0,9 |
молибден | 0,8-1,05 |
ванадий | 0,5-0,9 |
ниобий | 0,1-0,2 |
сера | 0,025 |
фосфор | 0,03 |
железо | остальное |
Данную марку стали в соответствии с требованиями действующей нормативно-технической документации [1-5] рекомендуется использовать как конструкционный материал в различных отраслях промышленности и народного хозяйства при производстве серийного энергооборудования общетехнического назначения, работающего до температур 580°С. При этом известная сталь не обеспечивает требуемого уровня и стабильности характеристик жаропрочности в условиях длительной высокотемпературной эксплуатации и отличается повышенной чувствительностью к коррозионно-усталостному разрушению. Вместе с тем, известной композиции свойственен широкий разброс и нестабильность основных физико-механических и служебных свойств, что не отвечает предъявляемым требованиям, определяющим заданную работоспособность и эксплуатационную надежность материала в условиях длительной эксплуатации теплообменного оборудования и паропроводов современных паросиловых установок. Согласно требованиям действующей нормативно-технической документации [1-6] содержание в сталях-аналогах ряда легирующих и примесных элементов, во многом определяющих требуемое структурное состояние металла и уровень его важнейших функциональных характеристик, не контролируется и находится в весьма широких концентрационных пределах.
Техническим результатом настоящего изобретения является создание жаропрочной стали, обладающей улучшенным комплексом и высокой стабильностью основных физико-механических и служебных свойств, меньшей склонностью к коррозионно-усталостному разрушению, а также большим значением по сравнению с известными материалами длительной прочности в условиях воздействия пара высоких параметров, что обеспечивает повышение эксплуатационной надежности и общего ресурса работы современного паросилового оборудования тепловых энергоблоков и электростанций. Технический результат достигается за счет того, что в состав известной стали, содержащей углерод, кремний, марганец, хром, молибден, ванадий, ниобий, серу, фосфор и железо, дополнительно введены алюминий, вольфрам, азот, бор, иттрий, водород и кальций при следующем соотношении компонентов, в мас.%:
углерод | 0,01-0,15 |
кремний | 0,2-0,5 |
марганец | 0,2-0,5 |
хром | 10,0-12,0 |
молибден | 0,4-0,8 |
вольфрам | 0,4-1,2 |
ванадий | 0,1-0,3 |
ниобий | 0,02-0,06 |
алюминий | 0,01-0,05 |
азот | 0,01-0,05 |
бор | 0,001-0,005 |
иттрий | 0,002-0,01 |
водород | 0,0005-0,003 |
кальций | 0,001-0,005 |
сера | 0,005-0,01 |
фосфор | 0,005-0,02 |
железо | остальное |
при этом:
- «молибденовый эквивалент», определяемый соотношением (Mo+0,5W), не должен превышать 1,0%;
- суммарное содержание углерода и азота (C+N) не должно превышать 0,16%;
- суммарное содержание серы и фосфора (S+P) не должно превышать 0,025%. Соотношение указанных легирующих и примесных элементов выбрано таким, чтобы заявляемая композиция обеспечивала требуемый уровень и стабильность важнейших структурно-чувствительных характеристик материала, во многом определяющих заданную работоспособность и эксплуатационную надежность теплообменного оборудования современных тепловых энергоблоков.
Введение в заявляемую сталь микролегирующих и модифицирующих добавок алюминия, вольфрама, азота, бора, иттрия и кальция в указанном соотношении с другими легирующими и примесными элементами улучшает ее структурную стабильность и, как следствие, весь комплекс основных физико-механических и служебных свойств, положительно влияющих на повышение жаропрочности материала в процессе длительной высокотемпературной эксплуатации, а также повышает работу зарождения и развития межзеренной трещины в условиях статического и динамического нагружений. При этом, как показали выполненные исследования [9-12], происходит более равномерное распределение легирующих элементов и неметаллических включений по всему сечению слитка, крупных поковок и слябов, металл эффективнее очищается от вредных примесей и газов, тоньше и чище становятся границы зерна, увеличивается высокотемпературная прочность межкристаллитной связи, что в целом обеспечивает значительное повышение деформационной способности материала. Снижается склонность стали к структурной анизотропии и существенно улучшается ее технологичность на стадии металлургического передела, что повышает выход годного при промышленном производстве крупногабаритных поковок и заготовок. Введение рассматриваемых элементов вне указанных в формуле изобретения пределов снижает эффективность их положительного влияния и не приводит к заметному улучшению важнейших структурно-чувствительных характеристик работоспособности материала в составе паросилового оборудования.
Модифицирование стали азотом, бором, водородом и кальцием в указанном соотношении с другими элементами, в частности с углеродом, ниобием, молибденом и вольфрамом, улучшает высокотемпературную структурную стабильность металла, способствует формированию при соответствующей термообработке в достаточном количестве мелкодисперсных карбидных, карбонитридных и других упрочняющих фаз, термодинамически устойчивых в интервале рабочих температур (500-630°С). При этом обеспечивается снижение структурной неоднородности в приграничных областях и по всему объему зерна и повышается сопротивление металла высокотемпературной ползучести в условиях длительного воздействия механического статического нагружения. В этом случае обеспечение требуемого, более высокого, чем в стали-прототипе, уровня прочностных и пластических характеристик стали достигается за счет твердорастворного упрочнения и более равномерного распределения упрочняющих фаз и наночастиц по всему объему зерна на стадии предвыделений [13-16], т.е. контролированием и управлением процессом наноструктурного упрочнения стали. При этом обеспечивается формирование устойчивой дислокационной структуры, определяющей оптимальную плотность активных плоскостей скольжения в процессе высокотемпературной пластической деформации и отражающей важный вклад дислокационной неупругости в механизм повышения характеристик жаропрочности. При этом логарифмический декремент колебаний как одна из важных характеристик реального структурного состояния металла и его деформационной способности отражает заметное возрастание энергоемкости процесса пластической деформации и, как следствие, работы зарождения хрупкой трещины в условиях ударного и циклического нагружений. Выполненные металлографические исследования и электронно-фрактографический анализ поверхности излома ударных образцов с помощью высокоразрешающей растровой электронной микроскопии [9-10] свидетельствует о преобладании внутризеренного характера разрушения и наличии развитого локального пластического течения металла, что является важной структурной характеристикой высокой деформационной способности заявляемой композиции. Вместе с тем, введение азота в указанном соотношении с углеродом и нитридообразующими элементами способствует более активному образованию высокодисперсных нитридов и карбонитридов, а также других упрочняющих фаз, что положительно влияет на повышение длительной прочности при сохранении необходимой деформационной способности материала. Под воздействием эксплуатационных факторов (напряжение, температура, среда и время) в условиях термического и деформационного старения формирующаяся при этом наноструктура стали обеспечивает стабильность основных физико-механических и служебных свойств и, в частности, существенное снижение скорости ползучести и повышение длительной прочности. Фрактографический анализ поверхности изломов образцов методом сканирования на растровом электронном микроскопе показал [9-12], что в заявляемой стали доля вязкой составляющей в зоне разрушения металла заметно возрастет по сравнению с известным составом. Увеличение содержания вводимых микролегирующих и модифицирующих добавок, а также вредных примесных элементов (S+P) свыше указанных в формуле изобретения пределов снижает дисперсность образующихся упрочняющих фаз (сложнолегированных карбидов типа М23 С6, карбонитридов типа MX, фазы Лавеса др.), что снижает равномерность их распределения по объему зерна и ослабляет механизм закрепления дислокации в процессе высокотемпературной эксплуатации и отрицательно влияет на коррозионно-механическую прочность металла в условиях длительного воздействия пара высоких параметров [14-16].
Что касается «молибденового эквивалента», то при содержании (Мо+0,5·W) более 1,0% очень сложно в процессе длительных эксплуатационных нагревов (до 100000 ч) избежать разупрочнения твердого раствора вследствие зарождения, роста и коагуляции в приграничных областях сложнолегированных карбидов и фаз Лавеса, обогащенных атомами молибдена и вольфрама, в результате чего происходит диффузионное обеднение твердого раствора по этим элементам и существенно снижаются характеристики жаропрочности материала [9-11, 14-16].
Полученный более высокий уровень физико-механических, технологических и служебных характеристик стали обеспечивается комплексным легированием заявляемой композиции в указанном соотношении с другими элементами, сбалансированным химическим и фазовым составом, нормированным содержанием вводимых микролегирующих и модифицирующих добавок, а также контролированием чистоты металла по остаточным вредным примесям - сере и фосфору.
В ЦНИИ КМ «Прометей» совместно с другими предприятиями отрасли в соответствии с планом проводимых научных исследований в рамках федеральной целевой программы «Энергетика-2015» выполнен необходимый комплекс лабораторных, расчетных и опытно-промышленных работ по выплавке, пластической и термической обработкам заявляемой марки стали. Металл выплавлялся в 50 т электродуговой печи дуплекс-процессом с обработкой на установке внепечного рафинирования и вакуумирования (УВРВ), где проводилась окончательная доводка стали до заданного химсостава. Обработка на УВРВ включает в себя вакуумирование, продувку аргоном, десульфурацию, раскисление и нагрев металла до заданной температуры разливки стали с последующим получением полуфабрикатов требуемого сортамента на промышленном кузнечно-прессовом и прокатном оборудовании.
Химический состав исследованных материалов, а также результаты определения всего комплекса наиболее важных их свойств и характеристик представлены в табл.1 и 2.
Ожидаемый технико-экономический эффект применения разработанной марки стали в энергомашиностроительных отраслях промышленности выразится в повышении эксплуатационной надежности, коэффициента полезного действия и общего ресурса работы паросиловых установок и тепловых энергоблоков, работающих на сверхкритических параметрах пара.
ЛИТЕРАТУРА
1. Марочник сталей и сплавов, Изд-во «Машиностроение», М., 2001, стр.320 - прототип.
2. ГОСТ 5632 «Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные» (марки и технические требования), Изд-во «Госстандарт», М., 1975.
3. ГОСТ 5949 «Сталь сортовая и калиброванная, коррозионностойкая, жаростойкая и жаропрочная» (технические условия), Изд-во стандартов, М., 1994.
4. ГОСТ 18968 «Прутки и полосы из коррозионностойкой и жаропрочной стали для лопаток паровых турбин» (технические условия), Изд-во стандартов, 1979.
5. В.Н.Журавлев, О.И.Николаева «Машиностроительные стали» (справочник), Изд-во «Машиностроение», М., 1989.
6. Технические условия ТУ 14-1-1529-93 «Заготовка трубная катаная и кованая для котельных труб», 1993.
7. Спецификация Кода ASME, № SA-508/SA-508M, 1995.
8. Спецификация общества ASTM, № А508/А-508М, 1995.
9. Технический отчет ЦНИИ КМ «Прометей» по теме «Новые теплоустойчивые стали для энергоблоков на суперсверхкритические параметры пара», С-Пб, 2006.
10. Технический отчет ЦНИИ КМ «Прометей» по гос. контракту № 02.467.11.2015 от 03.04.2006 «Разработка элементов технологии получения новых сплавов на основе системы железо-хром для создания энергоблоков на сверхкритических и суперсверхкритических параметрах пара, а также разработка высокопрочной коррозионно-стойкой стали мартенситно-аустенитного класса», С-Пб, 2006.
11. А.А.Чижик «Материалы для энергоблоков на сверхкритические параметры пара» - журнал «Тяжелое машиностроение», 1997, № 9, с.35-37.
12. Б.В.Фармаковский. Исследования ЦНИИ КМ «Прометей» в области наноматериалов». - Журнал «Индустрия», 2006, № 5.
13. Ю.Д.Третьяков. Проблема развития нанотехнологий в России и за рубежом. - «Вестник Российской академии наук», 2007, том 77, № 1, с.3-10.
14. В.Ю.Скульский, А.К.Царюк «Проблемы выбора стали для высокотемпературных компонентов энергоблоков ТЭС» - журнал «Автоматическая сварка», 2004, № 3, с.3-7.
15. В.Ю.Скульский, А.К.Царюк «Новые теплоустойчивые стали для изготовления сварных узлов тепловых энергоблоков» - журнал «Автоматическая сварка», 2004, № 4, с.35-40.
16. Хазуме, Такэда, Такано и др. «Новая сталь типа 12%Cr для роторов турбин применительно к температуре пара 593°С» - журнал «Теоретические основы инженерных расчетов», 1988, № 3, с.55-67.