устройство для регистрации и формирования рентгеновского изображения
Классы МПК: | G01T1/185 с приборами, содержащими ионизационные камеры |
Автор(ы): | Нам Ирина Феликсовна (RU), Рябков Сергей Александрович (RU), Толбанов Олег Петрович (RU), Тяжев Антон Владимирович (RU) |
Патентообладатель(и): | Общество с ограниченной ответственностью "РИД" (RU) |
Приоритеты: |
подача заявки:
2009-10-07 публикация патента:
27.04.2011 |
Изобретение относится к рентгенотехнике, в частности к рентгеновским приемникам, и предназначено для использования в медицинских рентгеновских установках, томографах, маммографах, а также в промышленных интроскопах с высоким пространственным разрешением. Устройство для регистрации и формирования рентгеновского изображения содержит твердотельный многоканальный рентгеновский приемник, выполненный в виде многострочной многоэлементной матрицы, и систему сбора данных, при этом в нем указанная матрица выполнена в виде структуры, на одной стороне которой нанесен сплошной электрод, а на противоположной стороне сигнальные электроды матрицы сформированы так, что каждая последующая строчка элементов сдвинута относительно предыдущей на часть элемента, соответствующую числу строк в матрице. Технический результат - устранение зависимости разрешения рентгеновского приемника от ширины щели его входного окна, уменьшение дозовых нагрузок на пациента, снижение уровня радиационного фона и токовой нагрузки на рентгеновскую трубку. 3 ил.
Формула изобретения
Устройство для регистрации и формирования рентгеновского изображения, содержащее твердотельный многоканальный рентгеновский приемник, выполненный в виде многострочной многоэлементной матрицы, и систему сбора данных, отличающееся тем, что в нем указанная матрица выполнена в виде структуры, на одной стороне которой нанесен сплошной электрод, а на противоположной стороне сигнальные электроды матрицы сформированы так, что каждая последующая строчка элементов сдвинута относительно предыдущей на часть элемента, соответствующую числу строк в матрице.
Описание изобретения к патенту
Изобретение относится к рентгенотехнике, в частности к рентгеновским приемникам, и предназначено для использования в медицинских рентгеновских установках, томографах, маммографах, в промышленных интроскопах с высоким пространственным разрешением.
В последнее время в медицинских исследованиях и диагностике различных патологий внутренних органов широко используются рентгеновские и томографические установки с высоким пространственным разрешением и цифровыми методами обработки изображений с последующим их выводом на экран телевизионного монитора или бумажный носитель. Получение высокого разрешения рентгеновского изображения особенно актуально при диагностике переломов в виде трещин и анализа структуры кости, а также при регистрации малых образований на ранних стадиях заболеваний молочной железы. Так, например, характерный размер "мостиков" в кости составляет порядка 50 мкм.
Известен рентгеновский приемник, содержащий линейный преобразователь на основе кремниевых детекторов, выходы которых через предварительные усилители подключены к аналоговому коммутатору, выход которого соединен с сигнальным процессором, а его выход через последовательно соединенные блок цифровой памяти и нелинейный преобразователь изображений подключен к видеоконтрольному устройству (см. Дефектоскопия, 1987, N7, стр.38-42).
Малые размеры полупроводниковых кремниевых детекторов позволяют создать приемник с высоким пространственным разрешением (0,1-0,2 мм), но низкая эффективность поглощения рентгеновского излучения в кремнии требует значительно увеличивать дозу облучения объекта, что нежелательно по соображениям радиационной безопасности как пациента, так и обслуживающего персонала.
Кроме того, существенным недостатком известного устройства является временная нестабильность характеристик отдельных каналов, требующая их постоянной подстройки в процессе работы.
Наиболее близким (прототипом) к заявляемому техническому решению является устройство линейного рентгеновского приемника (ЛРП) для цифровой рентгенографической медицинской установки, установленного на подвижном штативе механического сканирующего устройства, содержащего линейный многоэлементный рентгеночувствительный приемник (ЛМРП), выход которого соединен с системой опроса и считывания зарядов, подключенной через аналого-цифровой преобразователь (АЦП) к входу персональной электронно-вычислительной машины (ПЭВМ). ЛМРП выполнен в виде многопроволочной пропорциональной камеры с веерной анодной плоскостью, помещенной в герметичный корпус и заполненной инертным газом под давлением 3 атмосферы. Имея ширину входного окна ЛМРП около 0,5 мм и расстояние между проволочками 1 мм, рентгеновский приемник обеспечивает пространственное разрешение около 1 мм (см. препринт Института ядерной физики СО РАН N89-73, г.Новосибирск, стр.4-9).
Известно, что системы построчного ввода цифровых рентгеновских изображений, в которых перед объектом исследования устанавливается щелевая диафрагма, а за объектом - ЛРП, эффективно работают при разрешении не лучше 1 мм. При уменьшении размеров элемента приемника излучения до величины 50 мкм невозможно пропорционально уменьшить ширину полоски падающего на объект рентгеновского излучения, т.к. фокус рентгеновской трубки составляет 1-2 мм, расстояние до объекта 1 м и размеры объекта по направлению рентгеновского излучения около 0,5 м. В результате при построчном вводе изображения происходит неоправданное переоблучение объекта в 25-50 раз. В случае применения острофокусных трубок (размеры фокуса 50 мкм), например, в маммографии имеются трудности в юстировке из-за большого коэффициента отношения длины линейки приемников к ширине диагностического рентгеновского пучка, а также в исключении реальных люфтов и вибраций механических узлов.
Кроме того, при построчном вводе рентгеновская трубка включается на продолжительное время (1-20 секунд), необходимое для сканирования объекта, что приводит к ускоренному выходу ее из строя, а также к многократному (100 и более раз) увеличению уровня фонового рентгеновского излучения в помещении.
Известны приборы, в которых вместо линейки чувствительных элементов применяется многострочная матрица, такое решение позволяет использовать большую часть рентгеновского пучка и позволяет устранить вышеописанные недостатки, однако такой прибор имеет другой недостаток - высокую сложность изготовления многострочной матрицы, в которой число чувствительных элементов, а также соответствующих электронных каскадов считывания сигнала с чувствительных элементов, увеличено по сравнению с однострочным прибором в число раз, равное числу строк в матрице. Высокая сложность изготовления многострочного прибора снижает его надежность и повышает его стоимость.
Целью настоящего изобретения является устранение указанных недостатков однострочного прибора с сохранением числа чувствительных элементов.
В устройстве для регистрации и формирования рентгеновского изображения, содержащем многоканальный рентгеновский приемник, это достигается тем, что рентгеновский приемник выполнен в виде многострочной многоэлементной матрицы, на одной стороне которой нанесен сплошной электрод, а на противоположной стороне сигнальные электроды сформированы так, что каждая последующая строка элементов сдвинута относительно предыдущей на часть элемента, при этом величина сдвига соответствует размеру чувствительного элемента в направлении, перпендикулярном направлению сканирования, деленному на число строк в матрице, а также тем, что в состав устройства дополнительно введен контроллер формирования строки изображения.
Введение в состав рентгеновского приемника контроллера формирования строки изображения позволило обеспечить режим сканирования всего рентгеновского изображения объекта форматом многострочной матрицы, содержащей несколько строк, что обеспечивает сохранение заданного детектором пространственного разрешения при снижении радиационных нагрузок на пациента, радиационного фонового излучения и токовой нагрузки на рентгеновскую трубку.
При этом обеспечивается высокая эффективность использования рентгеновского излучения наряду с выполнением высокого пространственного разрешения, так как нет необходимости уменьшать с помощью щелевого коллиматора размер диагностической полоски рентгеновского излучения до размеров элемента структуры изображения, а пространственное разрешение в направлении сканирования определяется высотой строки (k), а в направлении, перпендикулярном направлению сканирования, межстрочным сдвигом d.
Указанное выполнение матричного рентгеновского приемника, позволившее устранить зависимость разрешения рентгеновского приемника от ширины щели его входного окна и при этом сохранить число каналов приемника как для однострочного, уменьшает дозовые нагрузки на пациента, уровень радиационного фонового излучения, а также снижает токовую нагрузку на рентгеновскую трубку, что не имеет аналогов в рентгенотехнике, а значит, соответствует критерию "научная новизна".
На фиг.1 приведена кинематическая схема устройства, поясняющая его работу, где 1 - рентгеновская трубка, 2 - щелевая диафрагма, 3 - исследуемый объект, 4 - блок детектирования рентгеновского излучения (БДРИ), 5 - сканирующее устройство рентгеновского аппарата.
На фиг.2 приведена блок-схема заявляемого устройства, где 10 - детектор рентгеновского излучения (ДРИ), 5 - сканирующее устройство, 6 - система опроса и считывания зарядов (СОиСЗ), 7 - аналого-цифровой преобразователь (АЦП), 8 - контроллер формирования строки изображения, 9 - ПЭВМ.
На фиг.3 приведен пример схемы расположения чувствительных элементов детектора для двухстрочной матрицы, где - направление рентгеновского и гамма-излучений, k - размер чувствительного элемента в направлении сканирования, h - размер чувствительного элемента в направлении, перпендикулярном направлению сканирования, d - относительный сдвиг чувствительных элементов, расположенных в соседних строчках матрицы.
Заявляемое устройство работает следующим образом.
Оператор рентгеновской установки с пульта управления включает рентгеновское излучение. Одновременно с включением рентгеновского излучения с пульта управления на вход ПЭВМ 9 поступает сигнал, запускающий программу, по которой ПЭВМ 9 включает сканирующее устройство рентгеновского аппарата 5 и контроллер 8, который осуществляет сбор информации с ДРИ 10 через систему опроса и считывания зарядов 6 и АЦП 7. Это осуществляется следующим образом. Вырабатываемый чувствительными элементами ДРИ 10 пропорциональный падающему рентгеновскому излучению электрический сигнал поступает в СОиСЗ, где происходит его усиление, накопление и хранение. Контроллер 8 формирует временные диаграммы для АЦП 7 и СОиСЗ 6. С первого управляющего выхода контроллера 8 на управляющий вход АЦП 7 поступают тактовые импульсы. Со второго управляющего выхода контроллера 8 на управляющий вход СОиСЗ 6 поступают управляющие импульсы логического уровня, по которым происходит управление работой СОиСЗ, а также считывание накопленной в СОиСЗ информации о сигналах, поступивших с ДРИ на вход АЦП. С выхода АЦП 7 оцифрованный сигнал поступает на сигнальный вход контроллера 8, в котором запоминается массив данных, поступивших с детектора для формирования строки рентгеновского изображения объекта путем сложения в определенном порядке получаемых фрагментов изображений, после чего сформированная строка рентгеновского изображения объекта из контроллера 8 передается в ПЭВМ 9, где, в свою очередь, из строк изображения формируется полное изображение объекта.
Например, при использовании матрицы, состоящей из 2 строк с разрешением 200 мкм, размеры чувствительного элемента составят: k=200 мкм, h=400 мкм, d=200 мкм, полный формат рентгеночувствительной матрицы составляет 410 мм × 0,4 мм (1024×2 элементов). Изображение объекта получается следующим образом. После включения рентгеновской трубки производятся считывание и передача в контроллер 8 изображения фрагмента объекта, регистрируемого матрицей 1024×2 элементов. Затем производится синхронное перемещение регистрирующей матрицы и щелевого источника рентгеновского излучения вдоль объекта на некоторое заданное расстояние (шаг = 200 мкм) и производится регистрация передачи в контроллер 8 следующего фрагмента изображения объекта. Далее система регистрации перемещается на следующий шаг, и производятся вышеописанные действия по циклу до тех пор, пока весь объект не будет зарегистрирован и передан в контроллер 8. После каждого перемещения контроллер 8 производит формирование текущей строки по заранее заданному алгоритму и передачу ее в ПЭВМ. Применительно к рассматриваемому примеру итоговое значение строки изображения может быть сформировано из данных, собираемых за два шага перемещения матрицы, причем нечетные элементы строки формируются из данных, полученных с чувствительных элементов второй строки матрицы детектора текущего шага перемещения, а четные - с элементов первой строки предыдущего шага (фиг.3). Следовательно, получаемое изображение строки содержит число элементов изображения, равное полному числу чувствительных элементов матрицы, и, соответственно, предельная разрешающая способность системы в направлении, перпендикулярном направлению сканирования, будет определяться значением сдвига чувствительных элементов двух соседних строк, что позволяет изготавливать матрицу с большим, чем в аналогах, размером чувствительных элементов
Таким образом, заявляемое устройство позволяет устранить зависимость разрешения рентгеновского приемника от ширины щели его входного окна, уменьшает дозовые нагрузки на пациента, уровень радиационного фонового излучения, а также снижает токовую нагрузку на рентгеновскую трубку и при этом не увеличивает число чувствительных элементов относительно однострочного детектора.
Класс G01T1/185 с приборами, содержащими ионизационные камеры