способ регенерации активного угля

Классы МПК:C01B31/08 активированный уголь 
B01J20/34 регенерация или реактивация
Автор(ы):,
Патентообладатель(и):Общество с ограниченной ответственностью "Собинтел" (RU)
Приоритеты:
подача заявки:
2009-10-14
публикация патента:

Изобретение относится к сорбционным технологиям и может быть использовано для восстановления свойств углеродных сорбентов и их повторного использования в производстве. Изобретение применимо к активным углям (АУ), использованным в процессе рекуперации органических растворителей. Способ регенерации активного угля включает термообработку в атмосфере дымовых газов в диапазоне 350-500°С при скорости подъема температуры 50-150°С/мин и активацию при 850-950°С. Изобретение позволяет получить кондиционный продукт из выработавшего ресурс рекуперационного активного угля. 4 табл.

Формула изобретения

Способ регенерации активного угля, включающий нагрев угля в атмосфере дымовых газов, его выдержку при конечной температуре нагрева, охлаждение и термообработку в потоке водяного пара при 850-950°С, отличающийся тем, что нагрев угля в атмосфере дымовых газов осуществляют до 350-500°С при скорости подъема температуры 50-150°С/мин.

Описание изобретения к патенту

Изобретение относится к сорбционным технологиям и может быть использовано для восстановления свойств углеродных сорбентов и их повторного использования в производстве. Изобретение применимо к активным углям (АУ), использованным в процессе рекуперации органических растворителей.

Известен способ регенерации активного угля путем двустадийной термообработки АУ по патенту РФ № 2042616 RU (опубл. 27.08.1995), включающий обработку АУ сначала потоком дымовых газов до 500-650°С со скоростью подъема темперауры 15-25°С/мин, охлаждение и обработку угля окислительным газом до 800-950°С со скоростью ее подъема 2-10°С/мин, при этом в качестве окислительного газа подают водяной пар в количестве 5-15 кг на 1 кг угля.

Недостатком данного способа является низкая механическая прочность гранул получаемого АУ, а также относительно низкое значение сорбционной емкости АУ, как правило, не превышающей значение активности свежего исходного АУ.

Предлагаемым изобретением решается задача переработки выработавшего свой ресурс рекуперационного АУ в кондиционный продукт с более высокими, чем у свежего АУ сорбционными характеристиками.

Для достижения указанного технического результата в способе регенерации активного угля, включающем нагрев угля в атмосфере дымовых газов, его выдержку при конечной температуре нагрева, охлаждение и термообработку проводят в потоке водяного пара при 850-950°С, а нагрев угля в атмосфере дымовых газов осуществляют до 350-500°С при скорости подъема температуры 50-150°С/мин.

Отличительными признаками предлагаемого способа от указанного выше известного, наиболее близкого к нему, является то, что нагрев угля в атмосфере дымовых газов осуществляют до 350-500°С при скорости подъема температуры 50-150°С/мин.

Благодаря наличию этих признаков получен высокоэффективный способ рекуперации активного угля.

Сущность предлагаемого способа заключается в следующем. В процессе многоцикловой адсорбции-десорбции органических соединений пористая структура со временем оказывается заблокированной высокомолекулярными органическими соединениями, образующимися на поверхности пор АУ. Полученный АУ должен не только полностью восстановить свои сорбционные свойства, но и приобрести в процессе получения специфическую пористую структуру, оптимальную для процессов многоцикловой адсорбции-десорбции.

Многочисленными экспериментами установлено, что на первом этапе регенерации необходимо верно выбрать температуру и скорость ее подъема. Установлено, что при высокой температуре - 500°С и выше при медленной скорости подъема температуры - 15-25°С/мин происходит полное удаление летучих компонентов из гранул активированного угля, при этом отложений пироуглерода не образуется, но интенсивно происходит внешний обгар гранул, что приводит к снижению насыпной плотности АУ без увеличения его сорбционных характеристик (выраженных в г/г сорбента).

При температуре на первой стадии 350-500°С при темпе подъема температуры - 50-150°С/мин, при термообработке происходит удаление летучих веществ с одновременным их разложением и образование пироуглерода на поверхности супермикропор и мезопор. При этом закладывается определенная пористая структура, развивающаяся при дальнейшей активации.

При температуре ниже 350°С летучие вещества, не удаляясь, часто разлагаются прямо в микропорах, препятствуя доступу перегретого пара при дальнейшей активации. При более высокой скорости подъема температуры (более 150°С/мин) разложение летучих компонентов также происходит в микропорах.

Температура на второй стадии процесса определяется с одной стороны низкой скоростью реакции окисления углерода водяным паром при температуре ниже 850°С, а с другой преобладанием в основном процесса внешнего обгара углерода над внутренним (формирующим сорбирующие поры) при температуре более 950°С.

Количество подаваемого на второй стадии водяного пара должно быть достаточным для проведения реакции окисления углерода в микропорах АУ.

Способ осуществляется следующим образом:

Берут отработанный рекуперационный АУ, в процессе работы утративший свою сорбционную способность на 50% и более. Загружают его в реактор и проводят обработку в среде дымовых газов до 350-500°С, со скоростью подъема температуры 50-150°С/мин. Затем уголь выгружают, охлаждают и подают его в другой реактор, где проводят обработку водяным паром при 850-950°С, подавая водяной пар в количестве 6-10 кг на 1 кг выгружаемого угля.

Полученный АУ выгружают, охлаждают, высеивают кондиционную фракцию, фасуют в бумажные мешки и направляют потребителю.

Пример 1.

Берут 10 кг отработанного активного угля марки АР-Б (в пересчете на сухой уголь) и подают его в реактор по направлению движения дымовых газов, обеспечивая нагрев его до 350°С при скорости подъема температуры 100°С/мин, выдерживают при конечной температуре 20 мин, после чего выгружают и охлаждают. Затем уголь направляют в реактор, где проводят обработку его в потоке водяного пара, нагревая до 850°С, при этом расход водяного пара составляет 6 кг на 1 кг активного угля. Полученный АУ имеет равновесную активность по толуолу 155 г/дм3, активность по метиленовому голубому 250 мг/г.

Пример 2.

Проведение процесса как в примере 1, за исключением того, что нагревание в потоке дымовых газов на первой стадии осуществляется до 500°С при скорости подъема температуры 140°С/мин, а после охлаждения в потоке водяного пара до температуры 950°С, при расходе водяного пара 10 кг на 1 кг выгружаемого угля. Полученный АУ имеет равновесную активность по толуолу 158 г/дм3, активность по метиленовому голубому 280 мг/г.

Пример 3.

Проведение процесса как в примере 1, за исключением того, что нагревание в потоке дымовых газов на первой стадии осуществляется до 450°С при скорости подъема температуры 100°С/мин, а после охлаждения в потоке водяного пара до температуры 900°С, при расходе водяного пара 8 кг на 1 кг выгружаемого угля. Полученный АУ имеет равновесную активность по толуолу 155 г/дм3, активность по метиленовому голубому 260 мг/г.

В таблице 1 приведены результаты исследования адсорбционной способности активных углей, регенерированных по предлагаемому способу в зависимости от температурного режима их получения, а также от скорости подъема температуры.

В таблице 2 приведены результаты исследования адсорбционной способности активных углей, регенерированных по предлагаемому способу в зависимости от расхода пара на второй стадии термообработки.

Пример 4.

Берут 10 кг отработанного активного коксового угля марки Каусорб-224 (в пересчете на сухой уголь) и подают его в реактор по направлению движения дымовых газов, обеспечивая нагрев его до 400°С при скорости подъема температуры 100°С/мин, выдерживают при конечной температуре 20 мин, после чего выгружают и охлаждают. Затем уголь направляют в реактор, где проводят обработку его в потоке водяного пара, нагревая до 900°С, при этом расход водяного пара составляет 8 кг на 1 кг активного угля. Полученный АУ имеет равновесную активность по толуолу 190 г/дм3.

В таблице 3 приведены результаты исследования адсорбционной способности активных углей на кокосовой основе, регенерированных по предлагаемому способу в зависимости от температурного режима их получения, а также от скорости подъема температуры.

В таблице 4 приведены результаты исследования адсорбционной способности активных углей на кокосовой основе, регенерированных по предлагаемому способу в зависимости от расхода пара на второй стадии термообработки.

Как следует из данных, приведенных в табл.1, 2, 3, 4, достигается получение углеродного адсорбента с более высокими, чем у исходного свежего активного угля, сорбционными характеристиками, при условии, что температурный режим на первой стадии термообработки поддерживают в диапазоне 350-500°С при скорости подъема температуры 50-150°С/мин, температурный режим на второй стадии термообработки 850-950°С, расход пара на второй стадии термообработки 6-10 кг/кг выгружаемого активного угля.

Таблица 1
СпособТемпература на первой стадии термообработки, °С Скорость подъема температуры на первой стадии термообработки, °С/минТемпература на второй стадии термообработки, °С Равновесная активность по толуолу, г/дм3 Адсорбционная активность по метиленовому голубому, мг/г
Предлагаемый 300 100900 125210
350 (пример 1) 100 900155 258
450 100 900155 260
500 100 900165 265
600 100 900132 215
500 35 900120 190
500 50 900148 230
500 100 900165 265
500 150 900151 235
500 200 900130 215
500 100 800132 180
500 100 850150 230
500 (пример 2)100 950 155270
500 1001000 127250
АР-Б ГОСТ 8703-74 - -- 135-
Примечание: Расход пара на 2 стадии термообработки 8 кг/ кг активного угля

Таблица 2
СпособРасход водяного пара, кг/кг угля Равновесная активность по толуолу, г/дм3 Адсорбционная активность по метиленовому голубому, мг/г
Предлагаемый 4 110170
6 145230
8 (пример 3) 155 260
10 153 265
12 136 210
АР-Б ГОСТ 8703-74, 135 -
Примечание: 1. Температура 1 стадии термообработки 450°С, скорость подъема температуры 100°С/мин

2. Температура 2 стадии термообработки 900°С.

Таблица 3
СпособТемпература на первой стадии термообработки, °С Скорость подъема температуры на первой стадии термообработки, °С/минТемпература на второй стадии термообработки, °С Равновесная активность по толуолу, г/дм3
Предлагаемый 300 100900 140
400 (пример 4)100 900 190
500 100 900185
600 100900 152
500 35 900125
500 50900 162
500 100 900182,
500 150900 163
500 200 900145
400 100800 155
400 100 850178
400 100950 169
400 100 1000135
Каусорб-224 ТУ 2162-210-05795731-2006 способ регенерации активного угля, патент № 2417948 способ регенерации активного угля, патент № 2417948 способ регенерации активного угля, патент № 2417948 160

Таблица 4
СпособРасход водяного пара, кг/кг угля Равновесная активность по толуолу, г/дм3
Предлагаемый 4 126
6 164
8 (пример 4)190
10 167
12 135
Каусорб-224 ТУ 2162-210-05795731-2006 -160
Примечание: 1. Температура 1 стадии термообработки 400°С, скорость подъема температуры 100°С/мин.

2. Температура 2 стадии термообработки 900°С.

Класс C01B31/08 активированный уголь 

способ получения модифицированного активного угля -  патент 2529233 (27.09.2014)
способ функционализации углеродных наноматериалов -  патент 2529217 (27.09.2014)
способ получения активного угля из растительных отходов -  патент 2527221 (27.08.2014)
пористые угреродные композиционные материалы и способ их получения, а также адсорбенты, косметические средства, средства очистки и композиционные фотокаталитические материалы, содержащие их -  патент 2521384 (27.06.2014)
способ получения активного угля на основе антрацита -  патент 2518964 (10.06.2014)
способ получения углеродного адсорбента -  патент 2518579 (10.06.2014)
магнитоуправляемый сорбент для удаления эндо- и экзотоксинов из организма человека -  патент 2516961 (20.05.2014)
способ дообработки питьевой воды -  патент 2510887 (10.04.2014)
способ получения хемосорбента -  патент 2510868 (10.04.2014)
способ получения активных углей из шихт коксохимического производства -  патент 2507153 (20.02.2014)

Класс B01J20/34 регенерация или реактивация

регенерация очистительных слоев с помощью струйного компрессора в открытом контуре -  патент 2527452 (27.08.2014)
способ очистки воды от силикатов -  патент 2526986 (27.08.2014)
поглощение летучих органических соединений, образованных из органического материала -  патент 2516163 (20.05.2014)
регенеративная очистка предварительно обработанного потока биомассы -  патент 2508929 (10.03.2014)
удаление загрязняющих веществ из газовых потоков -  патент 2501595 (20.12.2013)
фильтр для очистки воды на основе активированного угля и способ его регенерации -  патент 2499770 (27.11.2013)
устройство для очистки сточных вод и питьевой воды от радионуклидов и вредных химических элементов -  патент 2494969 (10.10.2013)
способ адсорбционной очистки сложных алкиловых эфиров метакриловой кислоты -  патент 2460718 (10.09.2012)
способ обезвреживания отработанного активированного угля с получением калорийного топлива -  патент 2458860 (20.08.2012)
способ и устройство для уменьшения попадания наночастиц активированного угля в смесь воды и этилового спирта -  патент 2454264 (27.06.2012)
Наверх