способ определения параметра киральности искусственных киральных сред

Классы МПК:G01N23/02 путем пропускания излучений через материал 
Автор(ы):, ,
Патентообладатель(и):Волобуев Андрей Николаевич (RU),
Осипов Олег Владимирович (RU),
Панфёрова Татьяна Александровна (RU)
Приоритеты:
подача заявки:
2010-03-22
публикация патента:

Изобретение относится к радиотехнике, в частности к способам определения электрофизических параметров искусственных киральных материалов, применяемых при изготовлении отражающих покрытий, волноведущих и излучающих структур СВЧ-диапазона. Предлагается экспериментальный способ измерения параметра киральности плоскопараллельного образца искусственной киральной среды с использованием сканирующего СВЧ-излучения с известной длиной волны при заданных значениях диэлектрической и магнитной проницаемостей вещества. Способ основывается на регистрации угла поворота плоскости поляризации СВЧ-излучения известной длины волны при прохождении плоскопараллельного образца кирального материала с помощью прямоугольной Е-плоскостной секториальной рупорной антенны. Параметр киральности образца вычисляется на основе экспериментально полученных данных как отношение угла поворота плоскости поляризации СВЧ-излучения к модулю волнового числа этого излучения. Технический результат изобретения - возможность определения параметра киральности материала в широком диапазоне длин волн СВЧ. 2 ил. способ определения параметра киральности искусственных киральных   сред, патент № 2418292

способ определения параметра киральности искусственных киральных   сред, патент № 2418292 способ определения параметра киральности искусственных киральных   сред, патент № 2418292

Формула изобретения

Способ определения параметра киральности среды, основанный на регистрации угла поворота плоскости поляризации СВЧ-волны в киральном образце с помощью прямоугольной Е-плоскостной секториальной рупорной антенны, отличающийся тем, что регистрируется численное значение угла поворота плоскости поляризации плоскополяризованной СВЧ-волны заданной длины и с помощью однозначной связи угла поворота плоскости поляризации плоскополяризованной СВЧ-волны, толщины образца киральной среды, относительных диэлектрической и магнитной проницаемостей киральной среды, длины СВЧ-волны в вакууме, определяется параметр киральности.

Описание изобретения к патенту

Изобретение относится к радиотехнике, в частности к способам определения электрофизических параметров искусственных киральных материалов, применяемых при изготовлении отражающих покрытий, волноведущих и излучающих структур.

Известен оптический способ определения удельного вращения оптически активных сред с помощью измерения угла поворота плоскополяризованного света в оптически активной среде [1].

Однако с помощью указанного оптического метода невозможно получить численное значение параметра киральности искусственных киральных материалов, а можно измерить, например, концентрацию естественного оптически активного вещества - сахара в моче, например сахариметром.

Современные искусственные метаматериалы могут создаваться с использованием киральных проводящих композитов зеркально асимметричной формы с поперечными размерами, значительно меньшими длины волны СВЧ [2]. Искусственная киральная среда представляет собой композитный материал, где в твердую диэлектрическую основу включаются периодически расположенные и хаотически ориентированные проводящие микроэлементы зеркально асимметричной формы. В качестве киральных композитов могут использоваться трехмерные право- и левовинтовые спирали, полоски в виде буквы S и ее зеркального эквивалента, плоские спирали и др. элементы, обладающие свойством зеркальной асимметрии. Структуры, включающие в себя зеркально асимметричные композиты, называются киральными и в настоящее время находят применение при создании нового класса частотно- и поляризационно-селективных устройств СВЧ и при проектировании малоотражающих покрытий определенного диапазона частот.

Для описания электрофизических свойств киральной структуры, в отличие от диэлектрической, необходимо использовать три материальных параметра - относительные диэлектрическую проницаемость способ определения параметра киральности искусственных киральных   сред, патент № 2418292 , магнитную проницаемость µ и параметр киральности способ определения параметра киральности искусственных киральных   сред, патент № 2418292 [2]. Существующие на настоящий момент волноводные методы измерения электрофизических параметров образцов позволяют получать экспериментальные значения только способ определения параметра киральности искусственных киральных   сред, патент № 2418292 и µ. Современные требования к созданию композиционных метаматериалов приводят к необходимости определения значения относительного параметра киральности образца с известными значениями диэлектрической и магнитной проницаемости и толщины. Известна теоретическая методика определения относительного параметра киральности кирального слоя на основе плоских S-элементов [3]. Экспериментальная реализация рассмотренного в [3] метода не представляется возможной.

Материальные уравнения киральной среды имеют вид [2]:

способ определения параметра киральности искусственных киральных   сред, патент № 2418292

где способ определения параметра киральности искусственных киральных   сред, патент № 2418292 и способ определения параметра киральности искусственных киральных   сред, патент № 2418292 - напряженности электрической и магнитной составляющих поля, а способ определения параметра киральности искусственных киральных   сред, патент № 2418292 и способ определения параметра киральности искусственных киральных   сред, патент № 2418292 - их индукции, способ определения параметра киральности искусственных киральных   сред, патент № 2418292 и µ - относительные диэлектрическая и магнитная проницаемости киральной среды; способ определения параметра киральности искусственных киральных   сред, патент № 2418292 - параметр киральности, i - мнимая единица. Верхние знаки соответствуют киральной среде на основе правых форм зеркально асимметричных элементов, а нижние знаки - на основе левых форм.

Параметр киральности способ определения параметра киральности искусственных киральных   сред, патент № 2418292 является связующим элементом двух дифференциальных уравнений второго порядка для векторов напряженности электрического и магнитного полей СВЧ-излучения в киральной среде [2]:

способ определения параметра киральности искусственных киральных   сред, патент № 2418292

где способ определения параметра киральности искусственных киральных   сред, патент № 2418292 - показатель преломления диэлектрической основы киральной среды, k=2способ определения параметра киральности искусственных киральных   сред, патент № 2418292 /способ определения параметра киральности искусственных киральных   сред, патент № 2418292 - модуль волнового числа СВЧ-излучения в киральной среде, способ определения параметра киральности искусственных киральных   сред, патент № 2418292 - длина волны этого излучения в киральной среде.

Для разделения уравнений (2) вводим напряженности электрических полей с правокруговой способ определения параметра киральности искусственных киральных   сред, патент № 2418292 и левокруговой способ определения параметра киральности искусственных киральных   сред, патент № 2418292 поляризацией (поля Бельтрами), фиг.1.

Напряженность плоскополяризованного электрического поля электромагнитной СВЧ-волны в киральной среде равна суперпозиции напряженностей электрических полей с правокруговой способ определения параметра киральности искусственных киральных   сред, патент № 2418292 и левокруговой способ определения параметра киральности искусственных киральных   сред, патент № 2418292 поляризацией способ определения параметра киральности искусственных киральных   сред, патент № 2418292 . Используя общую связь напряженностей электрического и магнитного полей в электромагнитной волне, можно найти напряженность магнитного поля в этой волне в виде способ определения параметра киральности искусственных киральных   сред, патент № 2418292 . Следовательно, связанные дифференциальные уравнения (2) разделяются на два независимых уравнения для электрических полей с правокруговой способ определения параметра киральности искусственных киральных   сред, патент № 2418292 и левокруговой способ определения параметра киральности искусственных киральных   сред, патент № 2418292 поляризацией:

способ определения параметра киральности искусственных киральных   сред, патент № 2418292

где kR=k(n+способ определения параметра киральности искусственных киральных   сред, патент № 2418292 ) и kL=k(n-способ определения параметра киральности искусственных киральных   сред, патент № 2418292 ) - волновые числа электрических полей с правокруговой и левокруговой поляризацией в киральной среде.

Используя общую связь между волновым числом и показателем преломления вещества, находим показатели преломления полей с правокруговой и левокруговой поляризацией nR=n+способ определения параметра киральности искусственных киральных   сред, патент № 2418292 и nL=n-способ определения параметра киральности искусственных киральных   сред, патент № 2418292 .

На основе феноменологических представлений Френель получил формулу для вычисления угла поворота плоскости поляризации света в оптически активной (киральной) среде [4]:

способ определения параметра киральности искусственных киральных   сред, патент № 2418292

где d - толщина среды, фиг.2. Величина способ определения параметра киральности искусственных киральных   сред, патент № 2418292 =способ определения параметра киральности искусственных киральных   сред, патент № 2418292 (nR-nL)/способ определения параметра киральности искусственных киральных   сред, патент № 2418292 носит название удельного вращения.

Подставляя выражения для nR и nL в формулу Френеля (4), получаем:

способ определения параметра киральности искусственных киральных   сред, патент № 2418292

где удельное вращение способ определения параметра киральности искусственных киральных   сред, патент № 2418292 =kспособ определения параметра киральности искусственных киральных   сред, патент № 2418292 .

Таким образом, физический смысл параметра киральности заключается в его равенстве удельному вращению, нормированному на волновое число.

Учитывая связь волнового числа электромагнитной волны в вакууме kвак=2способ определения параметра киральности искусственных киральных   сред, патент № 2418292 /способ определения параметра киральности искусственных киральных   сред, патент № 2418292 вак, где способ определения параметра киральности искусственных киральных   сред, патент № 2418292 вак - длина волны СВЧ-излучения в вакууме (фиг.2), и в среде способ определения параметра киральности искусственных киральных   сред, патент № 2418292 , находим из формулы (5) параметр киральности:

способ определения параметра киральности искусственных киральных   сред, патент № 2418292

Формула (5) позволяет вычислить параметр киральности искусственной киральной среды по измеренному углу поворота плоскости поляризации волны, прошедшей через киральный образец.

Для нахождения параметра киральности образца с помощью прямоугольной Е-плоскостной секториальной рупорной антенны 1 [5] плоскополяризованная СВЧ-волна заданной длины способ определения параметра киральности искусственных киральных   сред, патент № 2418292 вак направляется на плоский киральный образец (фиг.2). СВЧ-волна, прошедшая через киральный образец, воспринимается такой же рупорной антенной 2. Плоскость поляризации плоскополяризованной СВЧ-волны на входе из кирального образца определяется путем вращения рупорной антенны 2 вокруг своей оси. При появлении максимальной интенсивности СВЧ-излучения, регистрируемого от рупорной антенны 2, измеряется угол поворота рупорной антенны 2 относительно рупорной антенны 1. Угол поворота между антеннами 1 и 2 равен углу поворота плоскости поляризации способ определения параметра киральности искусственных киральных   сред, патент № 2418292 плоскополяризованной СВЧ-волны заданной длины способ определения параметра киральности искусственных киральных   сред, патент № 2418292 вак при ее прохождении через киральный образец. Используя известные данные о величинах d, способ определения параметра киральности искусственных киральных   сред, патент № 2418292 и µ, по формуле (6) вычисляется параметр киральности способ определения параметра киральности искусственных киральных   сред, патент № 2418292 исследуемого образца.

Предлагаемый экспериментальный способ измерения параметра киральности обладает следующими достоинствами:

1. Киральный образец находится в свободном пространстве, что не накладывает ограничений на его поперечные размеры.

2. Измерения можно проводить в широком диапазоне длин волн СВЧ.

3. Для проведений измерений не требуется определять точные значения мощности отраженной и прошедшей через киральный образец электромагнитных волн.

Источники информации

1. Ливенцев Н.М. Курс физики для медвузов. - М.: Высшая школа, 1974. - 648 с.

2. Неганов В.А., Осипов О.В. Отражающие, волноведущие и излучающие структуры с киральными элементами. - М.: Радио и связь, 2006. - 280 с.

3. Boruhovich S.P., Prosvirnin S.L., Schwanecke A.S., Zheludev N.I. Multiplicative measure of planar chirality for 2D meta-materials // Proceedings of the European Microwave Association, 2006. - V.2. - P.89-93.

4. Волькенштейн М.В. Биофизика. - М.: Наука, 1981. - 576 с.

5. Неганов В.А., Табаков Д.П., Яровой Г.П. Современная теория и практические применения антенн. - М.: Радиотехника, 2009. - 720 с.

Класс G01N23/02 путем пропускания излучений через материал 

способ измерения поверхностной плотности преимущественно гетерогенных грунтов -  патент 2524042 (27.07.2014)
экран-преобразователь излучений -  патент 2503973 (10.01.2014)
способ измерения электронной температуры термоядерной плазмы -  патент 2502063 (20.12.2013)
способ диагностики полупроводниковых эпитаксиальных гетероструктур -  патент 2498277 (10.11.2013)
способ определения количественного состава композиционных материалов -  патент 2436074 (10.12.2011)
система обнаружения и идентификации взрывчатых веществ на входе в здание -  патент 2436073 (10.12.2011)
устройство для создания высокого давления и высокой температуры -  патент 2421273 (20.06.2011)
способ (варианты) и система досмотра объекта -  патент 2418291 (10.05.2011)
радиационный способ бесконтактного контроля технологических параметров -  патент 2415403 (27.03.2011)
способ определения концентрации серы в нефти и нефтепродуктах -  патент 2367933 (20.09.2009)
Наверх