псевдоаккомодационные интраокулярные линзы с множеством дифракционных структур
Классы МПК: | G02C7/06 двухфокусные; многофокусные A61F2/16 внутриглазные линзы |
Автор(ы): | ХУН Синь (US), ВАННОЙ Стефен Дж. (US), ЧЖАН Сяосяо (US) |
Патентообладатель(и): | АЛЬКОН РИСЕРЧ, ЛТД. (US) |
Приоритеты: |
подача заявки:
2007-02-09 публикация патента:
10.05.2011 |
Изобретение относится к области офтальмологии и направлено на создание трифокальных интраокулярных линз, которые обеспечивают промежуточное зрение без ухудшения зрения вдали и вблизи. Этот результат обеспечивается за счет того, что многофокусная линза содержит оптический элемент, имеющий поверхность, содержащую, по меньшей мере, одну бифокальную дифракционную структуру и одну трифокальную дифракционную структуру, при этом бифокальная дифракционная структура выполнена с возможностью обеспечения ближнего и дальнего зрения, а трифокальная дифракционная структура выполнена с возможностью обеспечения ближнего, дальнего и промежуточного зрения. 3 н. и 21 з.п. ф-лы, 8 ил.
Формула изобретения
1. Многофокусная офтальмологическая линза, содержащая оптический элемент, имеющий поверхность, содержащую, по меньшей мере, одну бифокальную дифракционную структуру и одну трифокальную дифракционную структуру, при этом бифокальная дифракционная структура выполнена с возможностью обеспечения ближнего и дальнего зрения, и трифокальная дифракционная структура выполнена с возможностью обеспечения ближнего, дальнего и промежуточного зрения.
2. Многофокусная линза по п.1, в которой упомянутая поверхность характеризуется базовой эталонной кривой, выполненной с возможностью обеспечения фокуса преломления, соответствующего упомянутому дальнему зрению.
3. Многофокусная линза по п.1, в которой упомянутые дифракционные структуры расположены внутри участка упомянутой поверхности, окруженной периферическим участком упомянутой поверхности, которая в основном лишена дифракционных структур.
4. Многофокусная линза по п.3, в которой каждая из упомянутых дифракционных структур содержит одну или более кольцевых дифракционных структур, симметрично расположенных вокруг оптической оси упомянутого оптического элемента.
5. Многофокусная линза по п.4, в которой упомянутые кольцевые дифракционные структуры, содержащие упомянутую трифокальную дифракционную структуру, расположены ближе к упомянутой оптической оси, чем упомянутые кольцевые дифракционные структуры, содержащие упомянутую бифокальную дифракционную структуру.
6. Многофокусная линза по п.5, в которой упомянутые кольцевые дифракционные структуры, содержащие упомянутую трифокальную дифракционную структуру, распространены от упомянутой оптической оси на радиус, соответствующий размеру апертуры в диапазоне приблизительно от 1 до 1,5 мм.
7. Многофокусная линза по п.6, в которой упомянутая бифокальная дифракционная структура кольцом окружает упомянутую трифокальную дифракционную структуру.
8. Многофокусная линза по п.7, в которой упомянутые бифокальные дифракционные структуры демонстрируют уменьшение высоты уступа на своих границах в зависимости от увеличения расстояния от оптической оси.
9. Многофокусная линза по п.8, в которой упомянутое уменьшение высоты уступа охарактеризовано с помощью выбранной функции аподизации.
10. Многофокусная линза по п.9, в которой упомянутая функция аподизации определена в соответствии со следующим отношением:
,
в котором ri обозначает радиальное расстояние i-ой зоны,
rout обозначает внешний радиус последней бифокальной дифракционной структуры.
11. Многофокусная линза по п.1, в которой упомянутая трифокальная дифракционная структура содержит один или более уступов, главным образом, квадратной формы, а упомянутая бифокальная дифракционная структура содержит один или более уступов, главным образом, пилообразной формы.
12. Многофокусная линза по п.1, в которой упомянутая трифокальная дифракционная структура формирует ближний, дальний и промежуточный фокусы, упомянутые трифокальный ближний и дальний фокусы в основном совпадают, соответственно, с ближним и дальним фокусами упомянутой бифокальной структуры.
13. Многофокусная линза по п.12, в которой упомянутые ближний, промежуточный и дальний фокусы соответствуют, в основном, с соответствующим упомянутым ближним, промежуточным и дальним зрением.
14. Трифокальная офтальмологическая линза, содержащая оптический элемент, содержащий, по меньше мере, одну поверхность, характеризуемую базовой кривой, по меньшей мере, две кольцевых дифракционных структуры, расположенных на упомянутом оптическом элементе, одна из упомянутых структур является формирующей, главным образом, три фокуса, а другая - формирующей, главным образом, два фокуса, так что комбинация распределения энергии, связанная с фокусами одной структуры и фокусами другой структуры, приводит к обеспечению ближнего, промежуточного и дальнего зрения.
15. Трифокальная линза по п.14, в которой упомянутая базовая кривая обеспечивает силу преломления, соответствующую упомянутому дальнему зрению.
16. Трифокальная линза по п.15, в которой упомянутые дифракционные структуры окружены периферическим участком упомянутого оптического элемента, которая свободна от дифракционных структур.
17. Трифокальная линза по п.16, в которой упомянутая дифракционная структура, формирующая три фокуса, расположена ближе к оптической оси упомянутого оптического элемента, чем упомянутая дифракционная структура, формирующая два фокуса.
18. Трифокальная линза по п.16, в которой упомянутая дифракционная структура, формирующая три фокуса, содержит множество кольцевых дифракционных структур, продолжающихся от оптической оси упомянутого оптического элемента на первое расстояние от этой оси.
19. Трифокальная линза по п.18, в которой упомянутая дифракционная структура, формирующая два фокуса, содержит множество кольцевых дифракционных структур, продолжающихся от упомянутого первого расстояния на второе расстояние, меньшее, чем радиус упомянутого оптического элемента.
20. Трифокальная линза по п.14, в которой упомянутая базовая кривая является асферической с тем, чтобы уменьшить сферическую аберрацию.
21. Многофокусная офтальмологическая линза, содержащая оптический элемент, имеющий поверхность, содержащую две отдельных бифокальных структуры, причем упомянутые структуры демонстрируют разные дополнительные оптические силы, так что совместно обеспечивают ближнее, промежуточное и дальнее зрение.
22. Многофокусная линза по п.21, в которой одна из упомянутых структур обеспечивает дополнительную силу в диапазоне приблизительно от 3 до 9 диоптрий, а другая структура обеспечивает дополнительную силу в диапазоне приблизительно от 1,5 до 4,5 диоптрий.
23. Многофокусная линза по п.21, в которой одна из упомянутых структур расположена ближе к оптической оси упомянутого оптического элемента, чем другая структура.
24. Многофокусная линза по п.23, в которой каждая из упомянутых структур содержит множество концентрических дифракционных структур, расположенных вокруг упомянутой оптической оси.
Описание изобретения к патенту
Перекрестная ссылка на родственные заявки
Данная заявка притязает в соответствии с п.35 США §119 на приоритет предварительной заявки США № 11/350505, поданной 9 февраля 2006 г., которая здесь включена в описание изобретения в качестве ссылки.
Уровень техники
Настоящее изобретение относится, главным образом, к многофокальным офтальмологическим линзам и, более конкретно, к трифокальным офтальмологическим линзам, таким как трифокальные интраокулярные линзы (ИОЛы).
Многие офтальмологические линзы способны корректировать расстройства зрения, такие как, катаракта, близорукость, дальнозоркость или астигматизм. Например, интраокулярная линза (ИОЛ) может быть имплантирована в глаз пациента при хирургической операции катаракты, чтобы компенсировать потерю оптической силы удаленного естественного хрусталика. Даже обеспечивая требуемую оптическую силу, ИОЛы не обеспечивают аккомодацию (т.е. способность фокусироваться на объектах на разных расстояниях), которая может быть получена с помощью естественного хрусталика. Однако многофокусные ИОЛы известны, как обеспечивающие определенную степень аккомодации (также известную, как псевдоаккомодация). Например, бифокальные дифракционные ИОЛы способны обеспечивать ближний и дальний фокусы.
Трифокальные офтальмологические линзы также известны для получения ближнего и дальнего фокуса, также как и промежуточного фокуса. Такие традиционные трифокальные линзы, однако, страдают от некоторых недостатков. Например, они обеспечивают промежуточное зрение ценой ухудшения зрения вдали и/или вблизи.
Таким образом, существует потребность в улучшенных многофокусных офтальмологических линзах и, в частности, трифокальных офтальмологических линзах. Также есть потребность в таких мультифокальных линзах в форме интраокулярных линз (ИОЛов), которые могут быть имплантированы в глаза пациента, например, чтобы заменить естественный хрусталик.
Раскрытие изобретения
Настоящее изобретение относится, главным образом, к многофокальным офтальмологическим линзам, таким как трифокальные интраокулярные линзы (ИОЛы), которые обеспечивают ближнее и дальнее зрение, также как и промежуточное зрение. Офтальмологические линзы этого изобретения используют дифракционные структуры, чтобы направить падающий свет на три фокальных области, соответствующие ближнему, дальнему и промежуточному зрению. В некоторых случаях офтальмологические линзы включают в себя, по меньшей мере, две разные дифракционные структуры (шаблона), одна, демонстрирующая первоначально два фокуса, и другая - первоначально три фокуса, такие, что они совместно аккомодируют ближнее, промежуточное и дальнее зрение. В других случаях офтальмологические линзы включают в себя две разные дифракционные структуры (шаблона), которые, обе, формируют первоначально два фокуса, хотя и с разной дополнительной оптической силой, выбранной такой, что структуры (шаблоны) совместно обеспечивают ближнее, промежуточное и дальнее зрение.
В другом аспекте раскрыта трифокальная офтальмологическая линза, которая включает в себя оптический элемент, имеющий поверхность, которая содержит, по меньшей мере, одну трифокальную дифракционную структуру (шаблон) и, по меньшей мере, одну бифокальную дифракционную структуру, так, что бифокальная структура обеспечивает ближнее и дальнее зрение, и трифокальная структура формирует ближнее, дальнее и промежуточное зрение. Например, трифокальный шаблон или структура может формировать ближний, дальний и промежуточные фокусы, так, что ближний и дальний фокусы в основном совпадают, соответственно, с ближним и дальним фокусами бифокального шаблона. Таким образом, трифокальный и бифокальный шаблоны совместно формируют ближний, промежуточный и дальний фокусы (или фокальные области), соответствующие соответственно ближнему, промежуточному и дальнему зрению. Термины «фокусы» и «фокальные области» используются здесь взаимозаменяемо в их основном значении, чтобы определить пространственные области, в которых острота зрения (например, четкость изображения) повышена. Термин «бифокальная дифракционная структура» или шаблон, как он здесь использован, относится к дифракционным структурам, которые дифрагируют падающий свет первоначально на два дифракционных порядка (например, 60% или более световой энергии направлено в эти два дифракционных порядка). Далее, термин «трифокальный дифракционный шаблон», как он здесь использован, относится к дифракционным структурам, которые дифрагируют, падающий свет первоначально на три дифракционных порядка (например, 60% или более световой энергии направлено в эти три дифракционных порядка).
В соответствующем аспекте поверхность оптического элемента, содержащая дифракционные шаблоны, может быть охарактеризована с помощью базовой эталонной кривой, приспособленной для обеспечения преломляющей силы, соответствующей дальнему фокусу. Во многих вариантах осуществления изобретения дальний фокус обеспечивает оптическую силу в диапазоне приблизительно от 6 до 34 диоптрий с промежуточным фокусом, обеспечивающим дополнительную силу в диапазоне приблизительно от 1,5 до 4,5 диоптрий, и ближним фокусом, обеспечивающим дополнительную силу в диапазоне приблизительно от 3 до 9 диоптрий.
В другом аспекте дифракционные шаблоны расположены внутри участка поверхности, окруженного периферическим участком той поверхности, которая в основном лишена дифракционных структур. Другими словами, дифракционные структуры усечены таким образом, что периферийный участок поверхности обеспечивает исключительно силу преломления.
В другом аспекте трифокальный дифракционный шаблон может быть расположен ближе к оптической оси оптического элемента, чем бифокальный шаблон. К примеру, трифокальный дифракционный шаблон может содержать множество кольцевых дифракционных структур, которые распространяются от оптической оси оптического элемента до радиуса, соответствующего радиусу апертуры (зрачка) в диапазоне приблизительно от 1 до 1,5 миллиметров (т.е. диаметр апертуры в диапазоне приблизительно от 2 до 3 мм). Бифокальный шаблон может быть сформирован как множество кольцевых дифракционных структур, которые окружают трифокальный шаблон. Таким образом, трифокальный шаблон применяется как первоначальный дифракционный шаблон для маленьких апертур с дополнительной дифракцией, вносимой бифокальным шаблоном, увеличивающейся, как только размер апертуры увеличивается.
В соответствующем аспекте кольцевые бифокальные дифракционные структуры демонстрируют уменьшение высоты уступа на своих границах как функцию увеличения расстояния от оптической оси. Уменьшение высот шага может быть охарактеризовано с помощью функции аподизации. Пример такой функции аподизации приведен ниже (специалисту в этой области техники будет понятно, что могут быть использованы и другие функции):
в котором ri обозначает радиальное расстояние iой зоны,
rout обозначает внешний радиус последней бифокальной дифракционной зоны.
В другом аспекте дифракционные структуры, формирующие трифокальный шаблон, имеют другую форму, чем структуры, формирующие бифокальный шаблон. К примеру, трифокальный дифракционный шаблон может содержать один или более уступы, главным образом, квадратной формы, в то время как бифокальный дифракционный шаблон содержит один или более, главным образом, пилообразных уступов.
В другом аспекте изобретение обеспечивает трифокальную офтальмологическую линзу, которая содержит оптический элемент, одну поверхность с эталонным профилем, характеризуемым базовой кривой и, по меньшей мере, двумя кольцевыми дифракционными шаблонами, наложенными на эту базовую кривую. Один из шаблонов первоначально формирует три фокуса, тогда как другой первоначально формирует два фокуса, так что распределение объединенной энергии, связанной с фокусом одного шаблона и с фокусом другого шаблона, приводит к аккомодации ближнего, промежуточного и дальнего зрения. Далее, базовая кривая может быть адаптирована для получения силы преломления, соответствующей дальнему зрению.
В соответствующем аспекте периферийный участок оптического элемента, который в основном лишен дифракционных структур, окружает дифракционные шаблоны. В некоторых случаях дифракционный шаблон, формирующий три фокуса, расположен ближе к оптической оси оптического элемента, чем шаблон, формирующий два фокуса. К примеру, дифракционный шаблон, формирующий три фокуса, может содержать множество кольцевых дифракционных зон, которые распространяются от оптической оси оптического элемента до первого расстояния от этой оси, а дифракционный шаблон, формирующий два фокуса, может содержать множество дифракционных кольцевых зон, которые распространяются от первого расстояния до второго расстояния от оптической оси, которое меньше, чем радиус оптического элемента.
Еще в другом аспекте базовая кривая, характеризующая эталонный профиль поверхности, на которой расположены дифракционные шаблоны, является асферической, чтобы уменьшить сферическую аберрацию, особенно на дальнем фокусе для больших апертур.
В другом аспекте раскрыта многофокусная. офтальмологическая линза, которая включает в себя оптический элемент, имеющий поверхность, содержащую два отдельных бифокальных шаблона, где шаблоны проявляют разную дополнительную силу так, чтобы совместно обеспечить ближнее, промежуточное и дальнее зрение, например, один из шаблонов может обеспечить дополнительную силу в диапазоне приблизительно от 1,5 до 4,5 диоптрий, тогда как другой обеспечивает дополнительную силу в диапазоне приблизительно от 3 до 9 диоптрий.
В соответствующем аспекте один из бифокальных шаблонов может быть расположен ближе к оптической оси оптического элемента, чем другой. Например, шаблоны могут быть в форме концентрических дифракционных зон, расположенных вокруг оптической оси с зонами, соответствующими одному шаблону, распространяющемуся от оптической оси до выбранного радиального расстояния, и зонами, соответствующими другому шаблону, распространяющемуся от этого радиального расстояния на большее расстояние, которое выбрано во многих вариантах осуществления, чтобы быть меньше, чем радиус оптического элемента.
Дальнейшее понимание изобретения может быть получено отсылкой к следующему детальному описанию совместно с фигурами, которые кратко описаны ниже.
Краткое описание чертежей
Фиг.1А представляет схематический вид в сечении трифокальной офтальмологической линзы в соответствии с одним вариантом осуществления изобретения.
Фиг.1В представляет схематический вид в сечении передней поверхности оптического элемента линзы с фиг.1А, содержащей множество дифракционных структур, наложенных на базовый профиль.
Фиг.2 представляет собой вид спереди дифракционной линзы с предыдущих фигур, описывающий множество кольцевых зон, сформированных с помощью дифракционных структур.
Фиг.3 показывает пример распределения оптической силы в ближней, промежуточной и дальней фокальных областях трифокальной офтальмологической линзы, соответствующей одному варианту осуществления изобретения.
Фиг.4А схематично описывает фокусировку света, излучаемого ближним, промежуточным и дальним объектом, на сетчатке глаза, в которую имплантирована трифокальная ИОЛ линза, соответствующая варианту осуществления изобретения.
Фиг.4В представляет собой схематический вид спереди трифокальной офтальмологической линзы, соответствующей другому варианту осуществления изобретения, имеющей внутренний и внешний бифокальные дифракционные шаблоны с различными дополнительными силами, выбранными такими, что шаблоны совместно обеспечивают ближнее, промежуточное и дальнее зрение.
Фиг.4С схематично описывает профили оптической энергии в ближнем и дальнем фокусах отдельных бифокальных шаблонов линзы, показанных на фиг.4В, также как профили энергии в ближнем, промежуточном и дальнем фокусе, совместно полученные с помощью комбинированных шаблонов.
Фиг.5А представляет схематический вид в сечении трифокальной офтальмологической линзы, соответствующей другому варианту осуществления изобретения, имеющей дифракционные зоны с неравными областями.
Фиг.5В представляет собой вид спереди офтальмологической линзы с фиг.5А.
Фиг.6 представляет два схематических графика, сопоставляющие отношения между квадратами радиусов дифракционных зон двух дифракционных линз, в одном из которых дифракционные зоны демонстрируют одинаковые области, а в другом - они демонстрируют неодинаковые области.
Фиг.7 представляет два схематических графика, иллюстрирующих усиление остроты зрения для промежуточного зрения, полученного с помощью трифокальной офтальмологической линзы, соответствующей одному варианту осуществления изобретения.
Фиг.8 схематически описывает оптическое фазовое запаздывание (OPD), объединенной с тремя порядками дифракции многофокусной дифракционной офтальмологической линзы через два порядка дифракции как функции расстояния квадрата радиуса от оптической оси линзы.
Осуществление изобретения
Настоящее изобретение, главным образом, направлено на трифокальные офтальмологические линзы, такие как интраокулярные линзы, которые обеспечивают ближнее, промежуточное и дальнее зрение. Трифокальные офтальмологические линзы данного изобретения выгодно обеспечивают усиление зрительных характеристик для промежуточного зрения по сравнению с теми, которые обычно получены с помощью традиционных трифокальных линз, при обслуживании и во многих случаях превышающих ближние и дальние зрительные характеристики таких традиционных линз. В рассмотренных ниже осуществлениях разные аспекты трифокальных линз этого изобретения описаны в связи с интраокулярными линзами. Однако будет понятно, что принципы изобретения могут быть подобным образом применены при производстве других офтальмологических линз, таких как контактные линзы.
Со ссылкой на фиг.1А и 1В, трифокальная офтальмологическая линза 10, соответствующая одному варианту осуществления изобретения, включает в себя оптический элемент 12, имеющий переднюю оптическую поверхность 14 и заднюю оптическую поверхность 16. В этом осуществлении передняя и задняя оптические поверхности расположены симметрично относительно оптической оси 18 линзы, хотя также могут быть применены асимметричные поверхности. Обычно линза 10 также включает в себя радиально вытянутые элементы фиксации или прикрепляющие элементы 20 для ее установки в глазу пациента. Оптический элемент 12 может быть сформирован из любого подходящего биологически совместимого с живыми тканями материала. Некоторые примеры таких материалов включают в себя, без ограничения, мягкий акрил, силикон, гидрогель или другие биологически совместимые с живыми тканями полимерные материалы, имеющие необходимый показатель преломления для конкретного применения линзы. Элементы фиксации 20 также могут быть сформированы из подходящих полимерных материалов, таких как полиметилметакрилат, полипропилен и тому подобные. Хотя поверхности 14 и 16 описаны обычно как выпуклые, одна из двух поверхностей также может иметь обычную вогнутую форму. Альтернативно, поверхности 14 и 16 могут быть выбраны, чтобы получить плоско-выпуклую или плоско-вогнутую линзу. Термин «интраокулярная линза» и его аббревиатура «ИОЛ» здесь используются взаимозаменяемо для описания линз, которые имплантированы в глаз, чтобы или заменить естественный хрусталик глаза, или иначе улучшить зрение, невзирая на то, удален ли естественный хрусталик или нет.
Передняя поверхность 14 характеризуется базовой кривой 22 (описанной пунктирными линиями), которая обеспечивает выбранную силу преломления, и на которой множество дифракционных структур 24 наложены друг на друга. Как показано схематично на фиг.2, дифракционные структуры 24 могут быть охарактеризованы как формирующие множество концентричных кольцевых дифракционных зон 26, которые дифрагируют падающий свет во множество дифракционных порядков способом, подробно описанным ниже. Дифракционные зоны 26 ограничены внутри участка поверхности, которая окружена периферическим участком 28, в котором нет дифракционных структур. Другими словами, дифракционные зоны усечены таким образом, чтобы периферический участок передней поверхности вполне обеспечивал силу преломления, продиктованную базовой кривой. В этом осуществлении дифракционные зоны характеризуются двумя дифракционными шаблонами, один из которых здесь описан как трифокальный шаблон, а другой - как бифокальный шаблон. Более определенно, кольцевые зоны 26а, 26b и 26с, которые формируют трифокальный дифракционный шаблон, совместно направляют падающий свет, прежде всего, на три дифракционных порядка (здесь описываемых как дифракционные порядки «+1», «0» и «-1»). Свет, направленный на дифракционный порядок +1, сходится в одной точке, чтобы сформировать фокус, в то время как световые потоки, направленные на дифракционные порядки 0 и -1, сходятся в одной точке, чтобы сформировать соответственно промежуточный и дальний (дистанционный) фокус. Следует понимать, что дифракционные зоны, формирующие трифокальный шаблон, также дифрагируют свет и на высшие порядки. Однако трифокальный шаблон дифрагирует большой процент падающего света, например, около 60% или больше, на три вышеупомянутых порядка.
В этом варианте осуществления кольцевые дифракционные зоны 26d, 26e, 26f, 26g, 26h и 26i формируют бифокальный дифракционный шаблон, который дифрагирует падающий свет, прежде всего, в два дифракционных порядка (например, «0» и «+1» порядки). Свет, дифрагированный в 0-й порядок бифокального шаблона, сходится в фокусе, который в основном совпадает с вышеуказанным дальним фокусом, полученным путем схождения света, дифрагированного в -1 порядке трифокального шаблона. А свет, дифрагированный в +1 дифракционный порядок бифокального шаблона, сходится в фокусе, который в основном совпадает с вышеупомянутым ближним фокусом, полученным путем схождения света, дифрагированного в +1 дифракционный порядок трифокального шаблона. Подобно трифокальному шаблону бифокальный шаблон также дифрагирует свет и в высшие порядки. Однако он дифрагирует основную часть падающей оптической энергии, например, около 60% или больше, в вышеупомянутые 0 и -1 порядки.
Далее, преломляющий фокус, обеспечиваемый с помощью базовой кривой передней поверхности, обычно соответствует дальнему фокусу, полученному с помощью дифракционных шаблонов. То есть преломляющая сила линзы вносит свой вклад в обеспечение работы линзы для дальнего зрения.
Как показано схематично на фиг.1В, в этом варианте осуществления трифокальные дифракционные зоны сформированы с помощью в основном прямоугольных дифракционных структур (уступов), которые отделены одна от другой на своих зонных границах с помощью высоты уступа, в значительной степени одинаковой. К примеру, высота уступа при заданной длине волны может быть определена в соответствии со следующим отношением:
в котором - это заданная длина волны (например, 550 нм),
а обозначает параметр, который может быть отрегулирован, чтобы управлять дифракционной эффективностью, связанной с разными порядками, к примеру, а может быть выбрано равным 2,5,
n 2 обозначает показатель преломления оптического элемента, и
n1 обозначает показатель преломления среды, окружающей линзу. В осуществлении, в котором окружающая среда представляет собой телесную жидкость, имеющую показатель преломления 1,336, показатель преломления оптического элемента (n2) может быть выбран равным 1,55. Высота уступа, полученная с помощью вышеуказанного уравнения, - это только один пример, также могут быть использованы и другие высоты уступа.
В отличие от этого, бифокальные зоны в этом варианте осуществления сформированы путем множества пилообразных дифракционных структур, которые отделены одна от другой на соответствующих границах зон с помощью неодинаковых высот уступа. Более определенно, высоты уступов бифокального шаблона постепенно уменьшаются при увеличении расстояний от оптической оси. Другими словами, высоты уступов на границах бифокальных дифракционных структур являются, «аподизированными» для того, чтобы модифицировать порции оптической энергии, дифрагированные в ближний и дальний фокусы, как функцию размера апертуры (например, как только размер апертуры увеличивается, больше оптической энергии дифрагировано в дальнем фокусе). К примеру, высота уступа на границе каждой зоны бифокального дифракционного шаблона может быть определена в соответствии со следующим отношением:
в котором - это заданная длина волны (например, 550 нм),
а обозначает параметр, который может быть отрегулирован, чтобы управлять дифракционной эффективностью, связанной с разными порядками, например, а может быть выбрано равным 2,5,
n 2 обозначает показатель преломления линзы, и
n1 обозначает показатель преломления среды, в которой линза размещена, a fapodize представляет функцию масштабирования, чье значение понижается в зависимости от увеличения радиального расстояния от точки пересечения оптической оси с передней поверхностью линзы. К примеру, функция масштабирования fapodize может быть определена с помощью следующего отношения:
в котором ri обозначает радиальное расстояние iтой зоны,
rout обозначает внешний радиус последней бифокальной дифракционной зоны.
Другие аподизационные функции масштабирования также могут быть применены, такие как те, которые раскрыты в совместно рассматриваемой заявке на патент, озаглавленной «Аподизированные асферические дифракционные линзы», поданной 1 декабря 2004 года и имеющей серийный номер 11/000770, которая здесь включена в качестве ссылки. Далее дифракционные структуры могут иметь геометрические формы, отличающиеся от тех, которые описаны выше.
Хотя дифракционные свойства трифокального и бифокального шаблонов были отдельно обсуждены выше, два шаблона совместно формируют ближний, промежуточный и дальний фокусы для обеспечения, соответственно, ближнего, промежуточного и дальнего зрения. Как показано схематично на фиг.3, в каждом фокусе оптическая энергия распределяется в соответствии с профилем, который показывает максимум в точке фокуса и понижается по обеим сторонам от этой точки. Ширина профиля дифракционной энергии (например, ширина на половине максимума), связанного с каждой фокальной точкой, обеспечивает измерение объединенной глубины фокуса. В некоторых вариантах осуществления порция падающей оптической энергии (например, в форме обычно параллельных падающих лучей), направленная к каждому из ближних и дальних фокальных областей, относительно тех, которые направлены к промежуточной фокальной области, может быть в диапазоне приблизительно от 1,4 до 4. К примеру, дифракционная эффективность, связанная с каждым из ближних и дальних фокусов, может быть в диапазоне приблизительно от 28% до 38%, в то же время дифракционная эффективность, связанная с промежуточным фокусом, лежит в диапазоне приблизительно от 10% до 28%.
Ссылаясь снова на фиг.2, в этом варианте осуществления трифокальный дифракционный шаблон распространяется от оптической оси на расстояние (радиус) R от этой оси, в то время как бифокальный дифракционный шаблон распространяется от расстояния R на самую большую радиальную дистанцию R (меньше чем радиус R передней поверхности). Следовательно, для маленьких размеров апертуры (зрачка) свойства ближнего, промежуточного и дальнего зрения линзы, главным образом, определяются трифокальным дифракционным шаблоном. Как только размер апертуры (зрачка) увеличивается, свойства линзы, главным образом, диктуются бифокальным дифракционным шаблоном. В этом варианте осуществления, как только размер апертуры увеличивается, порция оптической энергии, направленной к ближнему и дальнему фокусам, относительно той, которая направлена к промежуточному фокусу, увеличивается. Более того, как замечено выше, аподизация высот уступа бифокальных дифракционных зон приводит к увеличению оптической энергии, направленной к дальнему фокусу, относительно ближнего фокуса, как только размер апертуры увеличивается. Главным образом, радиус оптического элемента (-R ) выбран таким, чтобы быть в диапазоне приблизительно от 2,5 до 3,5 миллиметров, с радиусом трифокального шаблона (R), лежащим в диапазоне приблизительно от 1 до 1,5 миллиметров и с радиусом бифокального шаблона (R ) в диапазоне приблизительно от 1,5 до 2 миллиметров, хотя могут быть использованы и другие значения. Далее, хотя только несколько кольцевых зон описаны здесь для простоты, количество кольцевых зон в каждом трифокальном и бифокальном шаблонах может быть обычно в диапазоне приблизительно от 3 до 30 и может быть основано на увеличении дополнительной силы.
Оптическая сила, связанная с дальним фокусом, может быть, например, в диапазоне приблизительно от 6 до 34 диоптрий. Промежуточный фокус может обеспечить дополнительную силу в диапазоне приблизительно от 1,5 до 4,5 диоптрий, а ближний фокус может обеспечить дополнительную силу в диапазоне приблизительно от 3 до 9 диоптрий.
Таким образом, вышеупомянутая трифокальная ИОЛ линза обеспечивает дальнее зрение для рассматривания объектов в диапазоне расстояний, например, приблизительно от бесконечности до 4 метров (м) и ближнее зрение для рассматривания объектов на расстояниях, меньших, чем, например, приблизительно 0,4 м. Дополнительно, ИОЛ 10 обеспечивает промежуточное зрение для рассматривания объектов на расстояниях в диапазоне, например, приблизительно от 0,4 м до 4 м (и в некоторых вариантах осуществления в диапазоне приблизительно от 0,4 м до 1 м). Другими словами, вышеупомянутая трифокальная офтальмологическая линза успешно обеспечивает степень аккомодации (обычно описываемую как псевдоаккомодация) для трех диапазонов расстояний. В качестве дальнейшей иллюстрации, как схематично показано на фиг.4А, когда трифокальная ИОЛ имплантирована в глаз пациента, объединенная сила роговицы глаза и ближняя сила, промежуточная и дальняя сила ИОЛа позволяют фокусировать свет, излучаемый объектами А, В и С, расположенными, соответственно, в ближнем, промежуточном и дальнем диапазоне расстояний, на роговицу пациента.
В некоторых вариантах осуществления трифокальная офтальмологическая линза данного изобретения включает в себя два бифокальных шаблона, - обеспечивающих различную дополнительную силу, - которые размещены на ее поверхности таким образом, что они совместно обеспечивают три фокальных области, соответствующих ближнему, промежуточному и дальнему зрению. К примеру, фиг.4В схематично иллюстрирует множество дифракционных зон 11, сформированных из двух разных бифокальных шаблонов, расположенных на передней поверхности 13 трифокальной линзы 15, в соответствии с другим вариантом осуществления изобретения. Подобно предыдущему варианту осуществления передняя поверхность характеризуется базовым профилем (не показан), который обеспечивает силу дальнего фокуса, соответствующую 0-му порядку дифракции каждого шаблона. Более конкретно, внутренние дифракционные зоны 11a, 11b и 11с формируют бифокальный шаблон, обеспечивающий одну выбранную добавочную силу, например дополнительную силу в диапазоне приблизительно от 3 до 9 диоптрий, в то же время дифракционные зоны 11d, 11e, 11f и 11g формируют другой бифокальный шаблон, который обеспечивает другую дополнительную силу, например дополнительную силу в диапазоне приблизительно от 1,5 до 4,5 диоптрий (дифракционные зоны показаны только для иллюстрации, и нет необходимости в обязательном рисовании в масштабе). Хотя в этом осуществлении внутренний бифокальный шаблон демонстрирует более высокую дополнительную силу, чем внешний бифокальный шаблон, в других вариантах осуществления внешний шаблон обеспечивает наивысшую дополнительную силу. Далее, хотя проиллюстрировано только несколько дифракционных зон, во многих вариантах осуществления количество дифракционных зон в каждом шаблоне может изменяться приблизительно от 3 до 30, или их может быть любое подходящее количество. Высоты уступа на границах зон могут быть одинаковыми или неодинаковыми и могут быть выбраны, например, по способу, рассмотренному выше. Дополнительная сила каждой зоны может быть установлена с помощью выбора местоположений границ этой зоны (т.е. радиального расстояния каждой дифракционной зоны в шаблоне) в соответствии со следующим отношением:
в котором i обозначает номер зоны (i=0 обозначает центральную зону),
обозначает заданную длину волны, и
f обозначает дополнительную силу.
В этом варианте осуществления внешний бифокальный шаблон демонстрирует намного больше оптической дополнительной силы, чем внутренний бифокальный шаблон. Например, внешний и внутренний бифокальные шаблоны могут обеспечивать, соответственно, дополнительную силу приблизительно 4D и 2D, соответствующую их +1 порядкам дифракции. Нулевые порядки дифракции двух шаблонов, однако, обычно совпадают и направляют падающий свет на область дальнего фокуса, характеризующуюся выбранной силой (основанной на кривизне поверхности оптического элемента и его показателе преломления) в диапазоне приблизительно от 6 до 34 диоптрий. Как показано схематично на фиг.5С, внешний шаблон обеспечивает дальний фокус А1 и ближний фокус А2, в то время как внутренний шаблон обеспечивает дальний фокус В1 (обычно совпадающий с А1) и ближний фокус В2. Поэтому два шаблона обеспечивают совместно далекий, промежуточный и ближний фокусы, в которых ближний фокус внутреннего и внешнего шаблона обеспечивает, соответственно, ближнее и промежуточное зрение.
Фиг.5А и 5В схематично описывают трифокальную офтальмологическую линзу 30, например ИОЛ, в соответствии с другим вариантом осуществления изобретения, которая включает оптический элемент 32, имеющий переднюю поверхность 34 и заднюю поверхность 36. Соответствующий профиль передней поверхности 34 характеризуется базовой кривой 38, приспособленной, чтобы обеспечивать силу дальнего фокуса. Передняя поверхность 34 далее включает в себя множество кольцевых дифракционных зон 40, сформированных множеством микроскопических дифракционных структур 42, которые симметрично расположены вокруг оптической оси 44 оптического элемента. Подобно предыдущему варианту осуществления оптический элемент может быть сформирован из биологического материала, а линза может далее включать в себя элементы крепления (не показаны), которые облегчают ее крепление в глазу. Более того, хотя поверхности 14 и 16 в этом варианте осуществления в основном вогнуты, в других вариантах осуществления вогнутость поверхности может быть выбрана, чтобы обеспечить плоско-выпуклую или плоско-вогнутую линзу.
Каждая кольцевая дифракционная зона отделена от соседней зоны уступом (например, уступ 50, разделяющий вторую зону от третьей зоны). Уступы расположены на радиальных границах зон. В этом варианте осуществления высоты уступов обычно одинаковы, хотя в других вариантах осуществления они могут быть аподизированы, например, способом, описанным выше.
В отличие от стандартных дифракционных линз, в которых дифракционные зоны имеют обычно одинаковые области, в этом варианте осуществления области дифракционных зон изменяются - управляемым образом - в зависимости от расстояния от оптической оси 44. Это изменение задается, чтобы полностью расширить профили оптической энергии в ближнем и дальнем фокусе, полученные с помощью двух дифракционных порядков дифракционных зон, так, чтобы обеспечить промежуточное зрение, в то же время сохраняя в значительной степени ближний и дальний фокусы. Например, со ссылкой на фиг.5 В, в этом варианте осуществления области кольцевых дифракционных зон 40 постепенно увеличиваются в зависимости от увеличения расстояния от оптической оси. Например, максимум различия между областями двух дифракционных зон (например, разница в областях внешней и внутренней, наибольших зон может быть приблизительно 75% или больше, например, свыше 200%).
Изменение областей дифракционных зон может быть выполнено путем выбора квадрата радиуса каждой зоны в зависимости от номера той зоны, где зоны последовательно пронумерованы радиально к внешнему краю от оптической оси, например способом, описанным ниже. К примеру, фиг.6 демонстрирует графики, противопоставляющие отношение (График А) между квадратами радиусов зон ( обозначает квадрат радиуса iой зоны) и номерами зон, обычно применяемыми в стандартных дифракционных линзах, с разным отношением (График В), использованным в этом варианте осуществления трифокальной офтальмологической линзы этого изобретения. Как отмечено в графиках, в трифокальной линзе квадраты радиусов зон демонстрируют выбранную степень нелинейного изменения как функцию номеров зон, в то время как квадраты радиусов зон линзы, имеющие одинаковые дифракционные области, изменяются линейно в зависимости от соответствующих номеров зон. Это изменяет интерференционный шаблон света, дифрагированного линзой для того, чтобы отклонить больше энергии в промежуточную фокальную область.
Более конкретно, в настоящем варианте осуществления радиальное расположение границы зоны может быть определено в соответствии со следующим отношением:
в котором i обозначает номер зоны (i=0 обозначает центральную зону),
обозначает заданную длину волны,
f обозначает фокусное расстояние ближнего фокуса, и
g (i) обозначает непостоянную функцию.
В этом варианте осуществления функция g (i) определена в соответствии со следующим отношением:
g(i)=(ai2+bi)f,
в котором i обозначает номер зоны,
а и b представляют собой два регулируемых параметра, и
f обозначает фокусное расстояние ближнего фокуса. К примеру, а может быть в диапазоне приблизительно от 0,1 до 0,3 , и b может быть в диапазоне приблизительно от 1,5 до 2,5 , где обозначает заданную длину волны.
Как указано выше, изменение областей дифракционных зон в зависимости от расстояния от оптической оси приводит к отклонению дифрагированного света в промежуточную фокальную область для обеспечения промежуточного зрения. Например, порция дифрагированного света в диапазоне приблизительно от 10% до 28% может быть направлена в промежуточную фокальную область.
К примеру, фиг.7 представляет два графика (С и D), схематично иллюстрирующие повышение остроты зрения для промежуточной области, обеспечиваемой вышеупомянутым примером трифокальной офтальмологической линзы. Более конкретно, график С (пунктирные линии) показывает распределение оптической энергии между ближним и дальним фокусами традиционной дифракционной линзы, в которой кольцевые дифракционные зоны имеют одинаковые области. В отличие от этого, график D схематично показывает распределение оптической энергии в офтальмологической линзе, соответствующей осуществлению изобретения, в которой, по меньшей мере, две или более дифракционных зоны имеют неодинаковые области. Сопоставление графика D с графиком С показывает, что вариант осуществления офтальмологической линзы этого изобретения, имеющей дифракционные зоны с неодинаковыми областями, обеспечивает значительное увеличение остроты зрения для промежуточного зрения, в то же время существенно сохраняя характеристики зрения при ближнем и дальнем зрении. К примеру, во многих вариантах осуществления дифракционная эффективность в каждом ближнем и дальнем фокусах может лежать в диапазоне приблизительно от 28% до 38%, с дифракционной эффективностью в промежуточном фокусе, лежащей в диапазоне приблизительно от 10% до 28%.
Подобно предыдущему варианту осуществления оптическая сила, связанная с дальним фокусом, может быть, например, в диапазоне приблизительно от 6 до 34 диоптрий с ближним фокусом, обеспечивающим дополнительную силу в диапазоне приблизительно от 3 до 9 диоптрий. Далее, промежуточный фокус может обеспечивать, например, дополнительную силу в диапазоне приблизительно от 1,5 до 4,5 диоптрий относительно дальнего фокуса.
Функциональность вышеупомянутых трифокальных линз, возможно, может быть лучше понята с помощью рассмотрения диаграммы, показанной на фиг.8, описывающей оптическое фазовое запаздывание (ОФЗ), связанное с тремя дифракционными порядками (т.е. +1, 0 и -1) многофокальной дифракционной линзы в двух дифракционных зонах, как функцию квадрата радиального расстояния от оптической оси. Фазовые запаздывания, связанные с +1 и -1, изменяются в основном линейно, - в то же время те, которые, связаны с 0ым порядком, остаются, в основном, постоянными, - как квадрат радиального расстояния изменяется от нуля до значения, соответствующего границе первой дифракционной зоны со второй (обозначенной здесь с помощью ZB12). На границе зоны оптическая фаза, связанная с каждым порядком, демонстрирует прерывистость. Хотя и не показано, похожая фазовая прерывистость встречается на границе второй зоны с третьей (обозначенной на ZB23) и т.д. Если границы зон расположены на позициях квадрата радиуса, соответствующих сдвигу оптической фазы поперек каждой дифракционной зоны, оптическая энергия, дифрагированная в 0ой порядок, в основном исчезает. Другими словами, линза обеспечивает эффективно только два дифракционных порядка (ближний и дальний фокус). Однако во многих вариантах осуществления этого изобретения местоположения квадрата радиуса одной или более границ дифракционных зон выбраны таким образом, чтобы сдвиг оптической фазы поперек дифракционной зоны был менее чем (например, он равен /4). Это приводит к отклонению некоторого количества оптической силы в 0м порядке, таким образом обеспечивая промежуточное зрение.
В некоторых вариантах осуществления расстояние зрения, обеспеченное трифокальной офтальмологической линзой, увеличено благодаря коррекции аберраций для больших апертур (например, размеры апертур больше 3 мм в диаметре, хотя в некоторых вариантах осуществления коррекция аберраций может быть также использована для меньших размеров апертуры). Такая коррекция аберраций может, например, компенсировать расфокусированный свет, если это имеет место, который может появляться на дальнем фокусе как результат увеличения количества света в промежуточной фокальной области. Например, базовый профиль (кривая) передней поверхности может быть выбран таким образом, чтобы иметь некоторую степень асферичности, чтобы уменьшить эффекты асферической аберрации, которые могут быть очень сильно выражены для больших апертур. Пример таких асферических профилей, подходящих для использования в практике этого изобретения, раскрыт в вышеупомянутой совместно рассматриваемой патентной заявке США, озаглавленной «Аподизированные асферические дифракционные линзы».
К примеру, асферической профиль передней поверхности в зависимости от радиального расстояния (R) от оптической оси линзы может быть охарактеризован следующим отношением:
в котором Z обозначает прогиб поверхности параллельно оси (z), например оптической оси, перпендикулярной поверхности,
с обозначает кривизну высшей точки поверхности,
cc обозначает коэффициент конусности,
R - радиальное положение поверхности,
ad обозначает четвертый порядок коэффициента деформации, и
ае обозначает шестой порядок коэффициента деформации.
Обычному специалисту в этой области будет понятно, что могут быть выполнены разные варианты модификаций, не выходя за пределы объема изобретения.
Класс G02C7/06 двухфокусные; многофокусные
Класс A61F2/16 внутриглазные линзы