способ тепловой защиты электронных модулей и устройство для его осуществления
Классы МПК: | H05K7/20 варианты выполнения, облегчающие охлаждение, вентиляцию или подогрев |
Автор(ы): | Бельских Галина Николаевна (RU), Данилова Марина Владимировна (RU), Киселев Вячеслав Михайлович (RU), Тарасов Владимир Владимирович (RU), Саморуков Сергей Петрович (RU), Сапронов Александр Сергеевич (RU) |
Патентообладатель(и): | Курское открытое акционерное общество "Прибор" (RU) |
Приоритеты: |
подача заявки:
2010-03-30 публикация патента:
27.05.2011 |
Изобретения предназначены для защиты в аварийных ситуациях электронных модулей типа регистраторов полетной информации, используемых на самолетах и любых других транспортных средствах. Технический результат заключается в повышении удельной теплоотводящей способности смеси на 30-50% и, как следствие, в обеспечении защиты электронного модуля меньшей на 20-30% массой смеси в течение не менее 60 минут при температуре 1100°С и 10 часов при температуре 260°С при одновременном улучшении эксплуатационных характеристик, повышении технологичности и стандартизации процесса сборки. Технический результат достигается в способе тепловой защиты электронных модулей путем отвода тепла с помощью теплозащитной смеси в процессе ее термохимического разложения, а устройство для осуществления этого способа содержит корпус, внутренние поверхности которого образуют полость для размещения в ее центре электронных модулей, теплоизоляционную прокладку, прилегающую к внутренней поверхности корпуса. Пространство между электронными модулями и теплоизоляционной прокладкой заполнено композиционной смесью борной кислоты или ее солей, например декагидраттетрабората натрия, и неорганической добавки минерального происхождения с температурой деградации выше 1100°С. 2 н.п. ф-лы, 1 ил.
Формула изобретения
1. Способ тепловой защиты электронных модулей путем отвода тепла с помощью теплозащитной смеси, отличающийся тем, что в качестве теплозащитной смеси используют композиционную смесь из борной кислоты или ее солей и неорганической добавки минерального происхождения в весовом соотношении от 70:30 до 85:15, причем неорганическая добавка минерального происхождения имеет температуру деградации выше 1100°С.
2. Устройство для осуществления способа тепловой защиты электронных модулей содержит корпус, внутренние поверхности которого образуют полость для размещения в ее центре электронных модулей, теплоизоляционную прокладку, прилегающую к внутренней поверхности корпуса, отличающееся тем, что пространство между электронными модулями и теплоизоляционной прокладкой заполнено композиционной смесью из борной кислоты или ее солей и неорганической добавки минерального происхождения в весовом соотношении от 70:30 до 85:15, причем неорганическая добавка минерального происхождения имеет температуру деградации выше 1100°С.
Описание изобретения к патенту
Способ и устройство тепловой защиты электронных модулей относятся к специальной области электронной техники, а именно к средствам защиты микроэлектронного оборудования от внешних разрушающих факторов, таких как высокотемпературные огневые воздействия, ударные перегрузки, статические давления, а также от длительного воздействия повышенной температуры, и могут быть использованы при создании защищенных бортовых накопителей полетной информации для самолетов и вертолетов, а также защищенных накопителей информации для других транспортных средств.
Известен способ тепловой защиты электронных модулей путем отвода тепла с помощью теплозащитной смеси, состоящей из кристаллогидратов цитрата бария и цитрата кальция в весовом соотношении от 80:20 до 40:60 с гелем кремниевой кислоты и ацетата цинка, причем кристаллы цитрата бария и цитрата кальция предварительно покрыты оболочкой из абиетата цинка, насыщенной смесью кремниевой кислоты и цинкатов натрия.
Известно устройство для осуществления такого способа тепловой защиты электронных модулей, содержащее корпус, внутренние поверхности которого образуют полость для размещения в ее центре электронных модулей, термическую прокладку, прилегающую к внутренней поверхности корпуса, средства для удаления из корпуса газообразных продуктов, при этом пространство между электронными модулями и термической прокладкой заполнено смесью кристаллогидратов цитрата бария и цитрата кальция с гелем кремниевой кислоты и ацетата цинка, причем кристаллы цитрата бария и цитрата кальция предварительно покрыты оболочкой из абиетата цинка, насыщенной смесью кремниевой кислоты и цинкатов натрия (патент РФ № 2323557, МПК7 H05K 7/20, H05K 5/02).
Недостатком ближайших аналогов является малая удельная теплоотводящая способность смесей, в результате чего для защиты модулей от воздействия высоких температур окружающей среды в течение необходимого периода времени требуется значительная масса смеси, что неприемлемо при ограниченных объемах.
Кроме того, смесь представляет собой порошок, который уплотняют непосредственно в устройстве, при этом нет повторяемости в плотности упаковки смеси, и в результате процесс сборки устройства невозможно стандартизовать. А наличие в смеси нестабильного при низких температурах геля кремниевой кислоты может привести к коррозии корпуса устройства (гель разрушается с высвобождением воды).
Технический результат заключается в повышении удельной теплоотводящей способности смеси и обеспечении ее работы в течение необходимого периода времени меньшим по массе и объему количеством смеси, а также в улучшении эксплуатационных характеристик, повышении технологичности и стандартизации процесса сборки.
Технический результат достигается за счет того, что в способе тепловой защиты электронных модулей путем отвода тепла с помощью теплозащитной смеси в качестве теплозащитной смеси используют композиционную смесь борной кислоты или ее солей и неорганической добавки минерального происхождения в весовом соотношении от 70:30 до 85:15, причем неорганическая добавка минерального происхождения имеет температуру деградации выше 1100°C.
Устройство для осуществления способа тепловой защиты электронных модулей содержит корпус, внутренние поверхности которого образуют полость для размещения в ее центре электронных модулей, теплоизоляционной прокладки, прилегающей к внутренней поверхности корпуса, при этом пространство между электронными модулями и теплоизоляционной прокладкой заполнено композиционной смесью борной кислоты или ее солей и неорганической добавки минерального происхождения в весовом соотношении от 70:30 до 85:15, причем неорганическая добавка минерального происхождения имеет температуру деградации выше 1100°С.
На чертеже представлена конструкция устройства тепловой защиты электронных модулей.
Устройство тепловой защиты содержит корпус 1, изготовленный из металла высокой прочности. Корпус 1 может иметь любую требуемую форму, обеспечивающую устойчивость к раздавливанию и проникающему удару. К внутренней поверхности корпуса 1 прилегает теплоизоляционная прокладка 2, предназначенная для пассивной (при рабочих температурах не изменяются состав и свойства, работает только как барьер для теплового потока) теплозащиты сохраняемого электронного модуля 3, расположенного в центре внутренней полости корпуса 1. Теплоизоляционная прокладка 2 выполнена из материала на основе кварцевых волокон, имеющих высокую пористость и низкий коэффициент теплопроводности. Композиционная теплозащитная смесь 4, состоящая из борной кислоты или ее солей, например декагидраттетрабората натрия, и неорганической добавки минерального происхождения, например природных полимеров: каолина, асбеста и др., занимает пространство между электронным модулем 3 и прокладкой 2. Неорганическая добавка минерального происхождения, являясь природным полимером, образует с борной кислотой композиционную смесь с трехмерной разветвленной структурой и представляет собой прессованную сборочную деталь со стандартными размерами, капиллярно-пористой структуры. Корпус 1 закрыт крышкой 5.
При воздействии на устройство высокой температуры теплоизоляционная прокладка 2 обеспечивает равномерный подвод тепла к теплозащитной смеси 4, необходимый для осуществления термохимической реакции. При достижении температуры смеси 120°C, 150°C, 170°C, 250°C начинается эндотермический процесс: последовательное термохимическое превращение мономера (борной кислоты или ее солей) в борный ангидрид с образованием последовательной цепочки олигомеров разной структуры и свойств. Геометрически плоская структура олигомеров в сочетании с трехмерной разветвленной структурой неорганической добавки минерального происхождения образуют высокопористую матрицу теплозащитной композиции 4. Высокопористая матрица теплозащитной композиции 4 устойчива и стабильна на протяжении требуемого температурно-временного интервала. Температура деградации неорганической добавки выше 1100°C, это позволяет осуществлять химический процесс поглощения тепла на протяжении требуемого времени действия теплозащитной смеси 4. При этом происходит отвод тепла от модуля 3 и охлаждение корпуса 1. Такой процесс позволяет удерживать температуру во внутренней полости корпуса 1 на уровне приемлемых величин (до 145°C).
Использование в предлагаемом способе и устройстве теплозащитной смеси 4, состоящей из борной кислоты или ее солей и неорганической добавки в качестве связующего вещества матрицы, позволило за счет термохимической реакции увеличить удельную теплопоглощающую способность смеси на 30-50% и обеспечило защиту электронного модуля меньшей на 20-30% массой смеси в течение не менее 60 минут при температуре 1100°C и 10 часов при температуре 260°C.
Теплозащитная смесь представляет собой прессованные стандартные (с фиксированными размерами) детали, что стандартизует и существенно облегчает процесс сборки. Теплозащитная смесь обладает стойкостью к технологическим воздействующим факторам, а также улучшает эксплуатационные характеристики устройства - совместима со всеми конструктивными элементами блока, не вызывает их коррозии.
Класс H05K7/20 варианты выполнения, облегчающие охлаждение, вентиляцию или подогрев