способ получения поли-бета-пинена
Классы МПК: | C09F1/00 Получение, очистка или химическое модифицирование природных смол, например живицы |
Автор(ы): | Смит Вильям Артурович (RU), Туманов Василий Викторович (RU), Мирошниченко Андрей Владимирович (RU) |
Патентообладатель(и): | Учреждение Российской академии наук Институт органической химии им. Н.Д. Зелинского РАН (ИОХ РАН) (RU) |
Приоритеты: |
подача заявки:
2010-06-08 публикация патента:
20.06.2011 |
Изобретение относится к способу получения поли- -пинена. Предложен способ получения поли- -пинена путем катионной полимеризации (3-пинена в среде 1,1,1,3,3,3-гексафторизопроипанола. Процесс проводят при мольном соотношения -пинен: ГФИП, равном 1:2-20 при температуре от 0°С до +60°С. Процесс полимеризации -пинена может проводиться в смеси ГФИП и дополнительного органического растворителя, а также в присутствии катализатора. Предлагаемый способ получения ПБП позволяет повысить эффективность и экологическую безопасность, а также позволяет существенно упростить процесс, повысить выход целевого продукта, улучшить характеристики по молекулярному весу, составу и оптической активности благодаря исключению необходимости использования кислот Льюиса. 3 з.п. ф-лы, 1 табл.
Формула изобретения
1. Способ получения поли- -пинена путем полимеризации -пинена в среде органического растворителя в присутствии инициатора, отличающийся тем, что в качестве органического растворителя и одновременно инициатора используют 1,1,1,3,3,3-гексафторизопроипанол (ГФИП).
2. Способ по п.1, отличающийся тем, что процесс полимеризации -пинена проводят при мольном соотношения -пинен: ГФИП 1:2-20 при температуре от 0 до +60°С.
3. Способ по п.1 или 2, отличающийся тем, что процесс полимеризации -пинена проводят в смеси ГФИП и дополнительного органического растворителя, выбранного из группы, включающей галогензамещенный углеводород, ароматический углеводород, при мольном соотношении -пинен: ГФИП: органический растворитель 1:2-10:0,2-2.
4. Способ по п.3, отличающийся тем, что процесс полимеризации -пинена проводят путем дополнительного введения катализатора, выбранного из группы кремнийсодержащих производных, включающей триметилсилилхлорид, триметилсилилтрифлат.
Описание изобретения к патенту
Настоящее изобретение относится к способу получения поли- -пинена путем бескислотной полимеризации -пинена, одного из представителей природных терпенов.
Поли- -пинен (ПБП) является одним из важнейших коммерчески важных полимеров группы терпеновых смол, что определяется в первую очередь доступностью соответствующего мономера, -пинена, который содержится в больших количествах в возобновляемом сырье - скипидаре хвойных пород растений. В США ПБП ежегодно производится в масштабах нескольких тысяч тонн. Так, компания Hercules Inc. (Wilmington, Delawar, USA, www.herc.com) выпускает различные модификации ПБП под общим названием Piccolyte S, которые находят широкое применение в промышленности для производства термопластичных и чувствительных к давлению адгезионных добавок при производстве клеев или клеев-расплавов, герметизирующих и электроизоляционных материалов, пленок для покрытия биологических образцов
Характеристики получаемого при этом ПБП, такие как средний молекулярный вес, дисперсия, угол вращения плоскости поляризации света, температура стеклования и термическая стабильность могут изменяться в широких пределах в зависимости от природы инициатора и условий проведения полимеризации.
К числу основных недостатков описанных в литературе способов получения поли- -пинена путем кислотной полимеризации -пинена следует прежде всего отнести использование в качестве инициаторов значительных количеств кислот Льюиса (иногда в сочетании с дополнительными активаторами), что обуславливает необходимость проведения реакции в инертной атмосфере и исключения следов воды, а также применения водной обработки реакционных смесей, процедур экстракции органическими растворителями, нейтрализации и удаления продуктов гидролиза используемых кислот Льюиса. Все это приводит к заметному снижению выхода ПБП и необходимости дополнительной очистки получаемого продукта. Указанные недостатки не только увеличивают трудоемкость производства ПБП, но и создают проблемы экологического характера из-за загрязнения окружающей среды отходами производства ПБП. Дополнительные технические сложности проведения реакции в условиях катионного инициирования вызываются необходимостью проведения реакции при строгом контроле температурного режима, так как при повышении температуры на 10-20°C может существенно снижаться молекулярный вес полимера. Кроме того, ПБП, получаемый с использованием органических добавок как активаторов, обязательно содержит в своем составе фрагмент молекулы активатора, что может неблагоприятно сказываться на свойствах продукта.
Типичным является пример получения поли- -пинена путем катионной полимеризации -пинена в среде органического инертного растворителя - смеси ароматических углеводородов под действием кислоты Льюиса, а именно AlEt3/H2O, которая служит инициатором, в присутствии различных сокатализаторов, например, трет-бутилхлорида (G.D.Malpass, Jr., US Patent, 4487901, 1984). Процесс осуществляют следующим образом: к раствору 36 ммоля AlEt3 в 300 мл смеси ароматических углеводородов в инертной атмосфере при 0°C прибавляют при перемешивании 36 ммолей воды в течение 30 мин, после чего продолжают перемешивание еще 50 мин. Затем температуру поднимают до 23°C и добавляют 102 г -пинена и, продолжая перемешивание, вводят 55 ммолей трет-бутилхлорида в течение 60 мин с такой скоростью, чтобы температура не поднималась выше 50-70°C. Далее реакционную смесь обрабатывают водой при интенсивном перемешивании в течении 5 мин. Отделают органический слой и его повторно промывают водой. Органическую фазу далее подвергают перегонке с перегретым паром при 240°C. Выход твердого полимера составляет 81%.
За прототип принят способ получения поли- -пинена путем катионной полимеризации -пинена в среде инертного органического растворителя, например, толуола, под действием кислоты Льюиса, а именно дихлорид этилалюминия, который используют в качестве инициатора (C2H 5AlCl2) (R.P.F.Quine, J.А.А.М.Castro, "Polymerization of -Pinene with Ethylalumnium Dichloride (C2H 5AlCl2)", Journal of Applied Science, 2001, 82, 2558).
Процесс осуществляют следующим образом: к раствору 20 г C2H5AlCl2 в 700 мл толуола, помещенному в 3 л реактор, снабженный мешалкой и охлаждаемой рубашкой, в токе азота прибавляют в течение двух часов 611.1 г. -пинена, поддерживая температуру +10°C. По окончании прибавления перемешивание продолжают еще 90 мин, после чего обрабатывают смесь водой и отделяют органический слой. Последний далее последовательно промывают разбавленной соляной кислотой, 1% NaOH, 2% лимонной кислотой и снова водой. После сушки над молекулярными ситами раствор тщательно фильтруют через диатомит для удаления взвешенных частиц. Растворитель удаляют отгонкой при атмосферном давлении при нагревании примерно до 140°C, после чего остаток перегоняют с перегретым паром при 200°C. Получено 315.6 г (выход 52%) поли- -пинена в виде белого порошка со средним молекулярным весом Mn=2432.
К числу основных недостатков прототипа, как и других описанных в литературе способов катионной полимеризации, следует прежде всего отнести: а) использование в качестве инициаторов значительных количеств кислот Льюиса, что обуславливает необходимость проведения реакции в инертной атмосфере и в отсутствие следов воды; б) необходимость использования многостадийной процедуры выделения целевого продукта, включающей стадии водной обработки реакционных смесей, их нейтрализации и удаления продуктов гидролиза используемых кислот Льюиса и в) необходимость дополнительной очистки получаемого продукта перегонкой с перегретым паром. Эти недостатки не только увеличивают трудоемкость производства ПБП и снижают выход целевого продукта, но и создают проблемы экологического характера по причине загрязнения окружающей среды отходами производства ПБП. Кроме того, дополнительные сложности проведения реакции в условиях катионного инициирования вызываются необходимостью проведения реакции при строгом контроле температурного режима, так как, например, при повышении температуры на 10-20°C при проведении полимеризации по прототипу может существенно снижаться молекулярный вес полимера (более чем вдвое, как показано в цитированной работе).
Задачей настоящего изобретения является создание эффективного и экологически безопасного способа получения поли- -пинена, позволяющего существенно упростить процесс и повысить выход целевого продукта благодаря исключению необходимости использования кислот Льюиса.
Поставленная задача достигается предлагаемым способом получения поли- -пинена путем катионной полимеризации -пинена в среде органического растворителя в присутствии инициатора, отличительной особенностью которого является то, что в качестве органического растворителя и одновременно инициатора реакции используют 1,1,1,3,3,3-гексафторизопроипанол (ГФИП).
Процесс проводят при мольном соотношения -пинен: ГФИП, равном 1:2-20 при температуре от 0°C до +60°C. Выход поли- -пинена близок к количественному (95-99%). Выделение полимера не требует какой-либо обработки реакционной смеси и стадий дополнительной очистки, а достигается простой отгонкой ГФИП, который может быть регенерирован с выходом до 85%.
Процесс полимеризации -пинена можно проводить в смеси ГФИП и дополнительного органического растворителя (сорастворителя), выбранного из группы, включающей галогензамещенный углеводород, например, хлористый метилен, либо ароматический углеводород, например, толуол, что позволяет в некоторых случаях уменьшить количество применяемого ГФИП до мольного соотношения -пинен: ГФИП: органический растворитель 1:2-10:0.2-2.
Также возможно проведение полимеризации -пинена в среде ГФИП в присутствии катализатора, выбранного из группы кремнийсодержащих производных, включающей триметилсилилхлорид (TMSCl), триметилсилилтрифлат (TMSOTf), что также позволяет уменьшить количество ГФИП и существенно увеличивает скорость реакции.
Способ полимеризации -пинена, согласно настоящему изобретению, проводят путем смешения мономера с растворителем, в роли которого может быть использован как 1,1,1,3,3,3-гексафторизопроипанол (ГФИП), так и смесь последнего с такими сорастворителями, как, например, хлористый метилен или толуол. Мольные соотношения мономер: ГФИП могут варьироваться в пределах от 1:2 до 1:20; в случае использования сорастворителей обычное соотношение мономер: ГФИП: сорастворитель = 1:2-10:0.2-2. Реакцию проводят при интенсивном перемешивании с помощью магнитной или механической мешалки или, альтернативно, с использованием вращающейся круглодонной колбы роторного испарителя. Не требуется использования инертной атмосферы и специальной осушки реагентов и растворителя. Температура реакции задается использованием термостатированной бани, и она может варьироваться от 0°C до +20°C. Возможно также проведение реакции при повышенной температуре (предпочтительно при +60°C), что достигается путем нагревания реакционной массы при температуре кипения растворителя с обратным холодильником. Возможно также использование катализаторов, например, таких как триметилсилилхлорид или триметилсилилтрифлат, что позволяет резко сократить время проведения реакции при температурах 0°C-5°C.
Во всех случаях реакция начинается почти немедленно после смешения мономера с растворителем, что проявляется в образовании эмульсии белого цвета, плотность которой со временем возрастает. Полнота прохождения полимеризации контролировалась по данным 1H ЯМР-спектров (исчезновение характеристичных сигналов -пинена), выполненных для периодически отбираемых проб. По окончании реакции растворитель удаляют упариванием в вакууме (400 мбар). ПБП обычно образуется в виде белого порошка, который при необходимости дополнительно высушивают в вакууме от следов растворителя. Выход полимера обычно превышает 95%.
Сущность изобретения состоит в том, что впервые обнаружена способность фторированных спиртов выступать в роли одновременно и инициатора и среды для проведения полимеризации -пинена в отсутствие каких-либо дополнительных кислотных инициаторов (бескислотное инициирование, БКИ). Оптимальным растворителем для проведения реакции является 1,1,1,3,3,3-гексафторизопроипанол (ГФИП). Реакция протекает при простом смешении мономера с ГФИП как таковым или в присутствии сорастворителя. Температура реакции может варьироваться в пределах от 0° до 60°C. Выделение целевого полимера не требует какой-либо обработки реакционной смеси, а достигается простым удалением растворителя, что резко упрощает процедуру выделения ПБП и делает возможным почти полную регенерацию применяемого растворителя. Таким образом, весь процесс получения ПБП включает только две раздельные операции, а именно смешение реагентов и удаление растворителя. Выход полимера обычно близок к количественному, и его дополнительная очистка не требуется; процесс не сопровождается образованием каких-либо отходов и поэтому может считаться экологически безопасным.
Получаемый при этом ПБП по своим характеристикам не уступает или даже превосходит ПБП, получаемый в стандартных условиях катионной полимеризации под действием различных кислот Льюиса. Так, средневесовой молекулярный вес (Mw) для ПБП, полученного с использованием различных кислот Льюиса может составлять 2842 (AlCl3, M.T.Barros, K.T.Petrova, A.M.Ramos, "Potentially Biodegradable Polymers Based on - or -Pinene and Sugar Derivatives or Styrene Obtained under Normal Coditions and Microwave Irradiation", Eur. J. Org. Chem. 2007, 1357), 2400 (EtAlCl2, R.P.F.Guine, J.A.A.M.Castro, "Polymerization of -Pinene with EtAlCl2 (C2H5 AlCl2)", J. Appl. Polym. Sci. 2001, 82, 2558) или 1670 (ZrCl4, F.Cataldo, D.Capitani, M.Gobbino, O.Ursini, F.Forlini, "Determination of Chemical Structure of Poly -Pinene by NMR Spectroscopy", Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2008, 45, 839). Для ПБП, получаемого в условиях БКИ, т.е. в условиях предлагаемого способа, Mw может колебаться в пределах от 2501 до 3847. По данным элементного анализа состав такого полимера в точности соответствует брутто-формуле C2H8, что свидетельствует об отсутствии каких-либо посторонних включений.
Важно также, что удельное вращение плоскости поляризации света для образцов, полученных нами в условиях БКИ, обычно составляет [a]D=-21-35°, в то время как для полимеризации под действием кислот Льюиса типично получение ПБП с [a]D =-9.3° (F.Citaldo, М.Gobbino, О.Ursini, G.Angelini, "A Study on the Optically Active Polymer Poly -pinene", J. Macromol. Set, Part A: Pure and Applied Chemistry, 2007, 44, 1225). Эти данные свидетельствуют о том, что в условиях БКИ резко подавляется возможность рацемизации ПБП, обычно протекающая при наличии в среде кислот Льюиса.
Способность ГФИП выступать в роли инициатора катионной полимеризации алкенов, эквивалентного традиционно используемым кислотам Льюиса, беспрецедентна и ранее никогда не наблюдалась. Неожиданность наблюдаемого эффекта усугубляется также тем обстоятельством, что по своей кислотности по Бренстеду ГФИП гораздо слабее уксусной кислоты и сравним с фенолом, которые абсолютно не способны вызывать полимеризацию каких-либо алкенов.
Технический результат, получаемый при реализации предлагаемого способа получения ПБП полимеризацией -пинена при использовании ГФИП в качестве инициатора и среды, состоит в упрощении технологии процесса, поскольку реакция не требует использования кислот Льюиса в качестве дополнительных инициаторов; полимеризация в условиях предлагаемого способа не требует тщательного исключения следов влаги и применения охлаждения и может проводиться в стандартной аппаратуре при комнатной температуре; процесс включает лишь две раздельные операции, а именно смешение мономера и растворителя и удаление растворителя; выделение получаемого ПБП требует только удаления растворителя, благодаря чему достигается практически количественный выход полимера, не требующего дополнительной очистки, так как в предлагаемых условиях БКИ не образуется каких-либо побочных продуктов, а используемый растворитель может быть почти полностью регенерирован, что делает этот процесс безотходным и экологически безопасным. Преимуществом предлагаемого способа является то, что образцы ПБП, получаемые в условиях БКИ, обычно имеют более высокий молекулярный вес и величину удельного вращения плоскости поляризации по сравнению с полученными в условиях инициирования реакции кислотами Льюиса.
Пример 1 (опыт 5, таблица)
К 12.0 г (0.088 моль) -пинена, помещенного в круглодонную колбу на 500 мл, вращающуюся на роторном испарителе (максимальные обороты) при охлаждении в ледяной бане, прибавляют 54.0 г (0.33 моль) охлажденного ГФИП в течении 15 мин. Помутнение и образование осадка наблюдалось практически сразу при прибавлении ГФИП. Реакционную смесь выдерживают в течение 1 часа на ледяной бане, растворитель упаривают на роторе (400 м бар, 50°C), собирают 45.0 г.(84%) ГФИП. Остаток высушивают в вакууме. Получено 11.9 г (99%) полимера ПБП в виде белого порошка. Mw 3182, D 1.27; [ D] -35.0° (толуол). Элементный анализ: вычислено (%) C, 88.16, H, 11.84; найдено С, 88.04, H, 11.63. Характеристики 1H и 13C спектров ЯМР полученного образца соответствуют приводимым в литературе данным для ПБП, продукта катионной полимеризации -пинена в стандартных условиях (F.Cataldo, G.Angelini, D.Capitani, M.Gobbino, О.Ursini, F.Forlini, "Determination of the Chemical Structure of Poly -pinene by NMR Spectroscopy", Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2008, 45, 839).
Типичные примеры условий проведения бескислотной полимеризации -пинена даны в приведенной таблице
Номер опыта | Мольное соотношение: | Условия реакции: | Выход поли- мера, % | Mw (Mw/Mn) | |||
-пинен | ГФИП | Сорастворитель, экв. | Время, ч | Темпера- тура, °C | |||
1 | 1 | 20 | 0.5 | 20 | >95 | 3569 (1.48) | |
2 | 1 | 2 | CH2 Cl2, 2 | 6 | 20 | >95 | 2501 (1,63) |
3 | 1 | 2 | Толуол, 2 | 24 | 20 | 95 | 2783 (1.51) |
4 | 1 | 2 | CH2Cl2, 2 | 4 | 0-5 | 0 | - |
5 | 1 | 4 | - | 1 | 0-5 | 99 | 3182 (1.27) |
6a | 1 | 2 | CH2Cl2, 2 | 0.5 | 0-5 | >95 | 3221 (1.23) |
7b | 1 | 2 | CH2 Cl2, 2 | 0.5 | 0-5 | >95 | 2883 (1.65) |
8 | 1 | 2 | - | 0.5 | 60 | >95 | 3847 (2.08) |
9 | 1 | 3 | CH2 Cl2, 0.2 | 1 | 0-5 | 95 | 3553 (1.46) |
10 | 1 | 10 | - | 1 | 0-5 | 95 | 3608 (1.24) |
11 | 1 | 10 | CH2 Cl2, 0.2 | 1 | 0-5 | 95 | 4256 (2.18) |
a - в присутствии каталитических количеств (0.01 эквивалента) TMSOTf | |||||||
b - в присутствии каталитических количеств (0.01 эквивалента) TMSCl |
Из приведенных примеров следует, что:
а) в чистом ГФИП полимеризация может успешно проводиться как при комнатной температуре (опыт 1), так и при 0°C (опыт 5), так; при этом соотношение -пинен: ГФИП может варьироваться от 1:20 до 1:4;
б) при использовании в качестве сорастворителя хлористого метилена возможно снижение количества используемого ГФИП, но при этом скорость реакции резко падает при температуре 0°C и ее необходимо проводить при температуре не ниже комнатной (ср. опыты 4 и 2);
в) использование каталитических количеств добавок, таких как триметилсилилхлорид или триметилсилилтрифлат, позволяют эффективно проводить реакцию при 0°C в присутствии сорастворителя и снижении количества требуемого ГФИП (ср. опыты 6, 7 и 4);
г) реакция полимеризации в ГФИП может также проводиться при температуре кипения растворителя; при этом реакция протекает практически мгновенно (см. опыт 8).
Таким образом, предлагаемый способ получения ПБП путем катионной полимеризации -пинена основан на применении ГФИП в качестве среды и инициатора, что позволяет проводить процесс по технически простой схеме и получать с практически количественным выходом целевой полимер, с улучшенными характеристиками по молекулярному весу, составу и оптической активности. Способ не требует использования каких-либо дополнительных инициаторов полимеризации; он эффективен, методически прост, безотходен и экологически безопасен.
Класс C09F1/00 Получение, очистка или химическое модифицирование природных смол, например живицы