генератор хаотических колебаний
Классы МПК: | H03B29/00 Генерирование токов и напряжений шумов |
Патентообладатель(и): | Прокопенко Вадим Георгиевич (RU) |
Приоритеты: |
подача заявки:
2010-03-11 публикация патента:
20.06.2011 |
Изобретение относится к радиотехнике и может быть использовано в качестве источника хаотических электромагнитных колебаний. Достигаемый технический результат - расширение пределов регулирования параметров генерируемого хаотического сигнала. Генератор хаотических колебаний содержит двухполюсный элемент с индуктивным сопротивлением, первый и второй двухполюсные элементы с емкостным сопротивлением, резистор, первый нелинейный преобразователь импеданса первого типа, первый двухполюсный элемент с емкостным сопротивлением содержит первый линейный емкостный элемент и первый нелинейный преобразователь импеданса второго типа, второй двухполюсный элемент с емкостным сопротивлением содержит второй линейный емкостный элемент и второй нелинейный преобразователь импеданса второго типа, двухполюсный элемент с индуктивным сопротивлением содержит линейный индуктивный элемент и второй нелинейный преобразователь импеданса первого типа. 24 ил.
Формула изобретения
Генератор хаотических колебаний, содержащий двухполюсный элемент с индуктивным сопротивлением, первый вывод которого соединен с первым входным выводом первого нелинейного преобразователя импеданса первого типа, второй входной вывод которого соединен с первым выводом резистора, второй вывод которого соединен с вторым выводом двухполюсного элемента с индуктивным сопротивлением и первым выводом первого двухполюсного элемента с емкостным сопротивлением, второй вывод которого соединен с первым выходным выводом первого нелинейного преобразователя импеданса первого типа и первым выводом второго двухполюсного элемента с емкостным сопротивлением, второй вывод которого соединен с вторым выходным выводом первого нелинейного преобразователя импеданса первого типа, отличающийся тем, что передаточная характеристика первого нелинейного преобразователя импеданса первого типа определена уравнением
где i2(i1) - ток, протекающий через выходные выводы первого нелинейного преобразователя импеданса первого типа;
i1 - ток, протекающий через входные выводы первого нелинейного преобразователя импеданса первого типа,
, ,
I0 - граничный ток между средним проходящим через начало координат и боковыми участками передаточной характеристики; а и b - вещественные коэффициенты, имеющие противоположные знаки; М и N - целые неотрицательные числа,
напряжение на первом входном выводе первого нелинейного преобразователя импеданса первого типа равно напряжению на первом выходном выводе первого нелинейного преобразователя импеданса первого типа, напряжение на втором входном выводе первого нелинейного преобразователя импеданса первого типа равно напряжению на втором выходном выводе первого нелинейного преобразователя импеданса первого типа, первый двухполюсный элемент с емкостным сопротивлением содержит первый линейный емкостной элемент, первый и второй выводы которого соединены соответственно с первым и вторым выводами первого нелинейного преобразователя импеданса второго типа, третий и четвертый выводы которого являются соответственно первым и вторым выводами первого двухполюсного элемента с емкостным сопротивлением, второй двухполюсный элемент с емкостным сопротивлением содержит второй линейный емкостной элемент, первый и второй выводы которого соединены соответственно с первым и вторым выводами второго нелинейного преобразователя импеданса второго типа, третий и четвертый выводы которого являются соответственно первым и вторым выводами второго двухполюсного элемента с емкостным сопротивлением, двухполюсный элемент с индуктивным сопротивлением содержит линейный индуктивный элемент, первый и второй выводы которого соединены соответственно с первым и вторым выводами второго нелинейного преобразователя импеданса первого типа, третий и четвертый выводы которого являются соответственно первым и вторым выводами двухполюсного элемента с индуктивным сопротивлением, переменный ток, протекающий в цепи первого двухполюсного элемента с емкостным сопротивлением, равен переменному току, протекающему в цепи первого линейного емкостного элемента, напряжение между выводами первого двухполюсного элемента с емкостным сопротивлением равно u1(uC1)=U0H1 (x),
где uC1 - переменное напряжение на первом линейном емкостном элементе; U0=I0R, R - сопротивление резистора, ,
, d1, h1 и s1 - вещественные коэффициенты, причем d1>>l, M1 и N1 - целые неотрицательные числа, переменный ток, протекающий в цепи второго двухполюсного элемента с емкостным сопротивлением, равен переменному току, протекающему в цепи второго линейного емкостного элемента, напряжение между выводами второго двухполюсного элемента с емкостным сопротивлением равно u 2(uC2)=U0H2(y),
где uC2 - переменное напряжение на втором линейном емкостном элементе, ,
, d2, h2 и s2 - вещественные коэффициенты, причем d2>>l, M2 и N2 - целые неотрицательные числа, переменное напряжение между выводами двухполюсного элемента с индуктивным сопротивлением равно переменному напряжению на линейном индуктивном элементе, ток, протекающий в цепи двухполюсного элемента с индуктивным сопротивлением, равен i(iL)=I0H3 (z),
где iL - переменный ток, протекающий в цепи линейного индуктивного элемента; ,
, d3, h3 и s3 - вещественные коэффициенты, причем d3>>l, М3 и N3 - целые неотрицательные числа, причем первый нелинейный преобразователь импеданса первого типа содержит усилитель напряжения, инвертирующий вход которого соединен с первым входным выводом первого нелинейного преобразователя импеданса первого типа и первым выводом нелинейного двухполюсника, второй вывод которого соединен с первым выходом усилителя напряжения и первым выводом линейного двухполюсника, второй вывод которого соединен с первым выходным выводом первого нелинейного преобразователя импеданса первого типа и неинвертирующим входом усилителя напряжения, второй выход которого соединен с вторым входным и вторым выходным выводами первого нелинейного преобразователя импеданса первого типа и общей шиной, второй нелинейный преобразователь импеданса первого типа содержит усилитель напряжения, инвертирующий вход которого соединен с вторым входом второго нелинейного преобразователя импеданса первого типа и первым выводом нелинейного двухполюсника, второй вывод которого соединен с первым выходом усилителя напряжения и первым выводом резистора, второй вывод которого соединен с вторым выходным выводом второго нелинейного преобразователя импеданса первого типа и неинвертирующим входом усилителя напряжения, второй выход которого соединен с первым входным и первым выходным выводами второго нелинейного преобразователя импеданса первого типа, каждый нелинейный преобразователь импеданса второго типа содержит усилитель напряжения, неинвертирующий вход которого соединен с первым входным и первым выходным выводами нелинейного преобразователя импеданса второго типа, второй входной вывод которого соединен с первым выходом усилителя напряжения и первым выводом резистора, второй вывод которого соединен с инвертирующим входом усилителя напряжения и первым выводом нелинейного двухполюсника, второй вывод которого соединен с вторым выходом усилителя напряжения и вторым выходным выводом нелинейного преобразователя импеданса второго типа, каждый нелинейный двухполюсник содержит 1+2Max(Q, R) последовательно включенных активных четырехполюсников, где Max(Q, R) - большее из чисел Q и R, которые равны соответственно М и N в нелинейном двухполюснике, входящем в состав первого нелинейного преобразователя импеданса первого типа, M1 и N1 в нелинейном двухполюснике, входящем в состав первого нелинейного преобразователя импеданса второго типа, M2 и N2 в нелинейном двухполюснике, входящем в состав второго нелинейного преобразователя импеданса второго типа, М3 и N3 в нелинейном двухполюснике, входящем в состав второго нелинейного преобразователя импеданса первого типа, первый и второй выводы первого активного четырехполюсника соединены соответственно с первым и вторым выводами нелинейного двухполюсника и выходами соответствующих первого и второго генераторов тока нелинейного двухполюсника, общие шины которых соединены с первой шиной питания, третий и четвертый выводы каждого предыдущего активного четырехполюсника соединены соответственно с первым и вторым выводами последующего активного четырехполюсника, третий и четвертый выводы последнего, 1+2Max(Q,R)-го, активного четырехполюсника соединены с соответствующими первым и вторым выводами резистора, линейный двухполюсник содержит резистор, первый и второй выводы которого, являющиеся соответствующими первым и вторым выводами линейного двухполюсника, соединены с соответствующими третьим и четвертым выводами активного четырехполюсника, первый и второй выводы которого соединены с выходами соответствующих первого и второго генераторов тока линейного двухполюсника, общие шины которых соединены с первой шиной питания, каждый активный четырехполюсник содержит первый и второй транзисторы, эмиттеры которых, являющиеся соответствующими первым и вторым выводами активного четырехполюсника, соединены с соответствующими первым и вторым выводами первого резистора, коллектор первого транзистора соединен с эмиттером третьего транзистора и базой четвертого транзистора, эмиттер которого соединен с коллектором пятого транзистора и первым выводом второго резистора, второй вывод которого соединен с базой пятого транзистора и первым выводом третьего резистора, второй вывод которого соединен с эмиттером пятого транзистора, базой второго транзистора и выходом первого генератора тока, общая шина которого соединена с первой шиной питания и общей шиной второго генератора тока, выход которого соединен с базой первого транзистора, эмиттером шестого транзистора и первым выводом четвертого резистора, второй вывод которого соединен с базой шестого транзистора и первым выводом пятого резистора, второй вывод которого соединен с коллектором шестого транзистора и эмиттером седьмого транзистора, база которого соединена с коллектором второго транзистора и эмиттером восьмого транзистора, база и коллектор которого соединены с четвертым выводом активного четырехполюсника и выходом третьего генератора тока, общая шина которого соединена с коллекторами четвертого и седьмого транзисторов, второй шиной питания и общей шиной четвертого генератора тока, выход которого соединен с базой и коллектором третьего транзистора и третьим выводом активного четырехполюсника, каждый усилитель напряжения содержит первый и второй транзисторы усилителя, базы которых являются соответствующими неинвертирующим и инвертирующим входами усилителя напряжения, эмиттер первого транзистора усилителя соединен с коллектором третьего транзистора усилителя и базой четвертого транзистора усилителя, эмиттер которого соединен с выходом первого генератора тока усилителя и эмиттером третьего транзистора усилителя, база которого соединена с коллектором четвертого транзистора усилителя и эмиттером второго транзистора усилителя, коллектор которого соединен с базой пятого транзистора усилителя и эмиттером шестого транзистора усилителя, база и коллектор которого соединены с выходом второго генератора тока усилителя и базой седьмого транзистора усилителя, эмиттер которого соединен с коллектором первого транзистора усилителя, эмиттер пятого транзистора усилителя соединен с коллектором восьмого транзистора усилителя и первым выводом первого резистора усилителя, второй вывод которого соединен с базой восьмого транзистора усилителя и первым выводом второго резистора усилителя, второй вывод которого соединен с эмиттером восьмого транзистора усилителя, выходом третьего генератора тока усилителя и первым выходом усилителя напряжения, коллектор пятого транзистора усилителя соединен с выходом четвертого генератора тока усилителя и эмиттером девятого транзистора усилителя, коллектор которого соединен с выходом пятого генератора тока усилителя и вторым выходом усилителя напряжения, база девятого транзистора усилителя соединена с третьей шиной питания, общие шины первого, третьего и пятого генераторов тока усилителя соединены с первой шиной питания, общие шины второго и четвертого генераторов тока усилителя соединены с коллектором седьмого транзистора и с второй шиной питания.
Описание изобретения к патенту
Предлагаемое изобретение относится к радиотехнике и может быть использовано в качестве источника хаотических электромагнитных колебаний.
Известен генератор хаотических колебаний (N.Inaba, T.Saito and S.Mori. Chaotic phenomena in a circuit with negative resistance and ideal swith of diodes // The transactions of IEICE, 1987, vol. E 70, no 8, p.744), содержащий устройство с отрицательным сопротивлением, первый вывод которого соединен с первыми выводами первого конденсатора и нелинейного резистора, второй вывод соединен со вторым выводом первого конденсатора и первыми выводами второго конденсатора и индуктивного элемента, вторые выводы которых соединены со вторым выводом нелинейного резистора.
Также известен генератор хаотических колебаний (Т.Мацумото. Хаос в электронных схемах. ТИИЭР, 1987, т.75, № 8, с.67-68, рис.1 и рис.6), содержащий устройство с отрицательным сопротивлением, первый вывод которого соединен с первым выводом первого конденсатора и первым выводом резистора, второй вывод которого соединен с первым выводом второго конденсатора и первым выводом катушки индуктивности, второй вывод которой соединен с вторым выводом второго конденсатора и вторым выводом устройства с отрицательным сопротивлением.
Недостатком этих генераторов является ограниченная возможность видоизменения хаотического аттрактора, что ограничивает возможности перестройки параметров генерируемых хаотических колебаний.
Наиболее близким по технической сущности к заявляемому устройству является генератор хаотических колебаний (Прокопенко В.Г. Генератор хаотических колебаний. Пат. 2273088. Опубл. 2006, БИПМ № 9), содержащий двухполюсный элемент с индуктивным сопротивлением, первый вывод которого соединен с первым входным выводом первого нелинейного преобразователя импеданса первого типа, второй входной вывод которого соединен с первым выводом резистора, второй вывод которого соединен с вторым выводом двухполюсного элемента с индуктивным сопротивлением и первым выводом первого двухполюсного элемента с емкостным сопротивлением, второй вывод которого соединен с первым выходным выводом первого нелинейного преобразователя импеданса первого типа и первым выводом второго двухполюсного элемента с емкостным сопротивлением, второй вывод которого соединен с вторым выходным выводом первого нелинейного преобразователя импеданса первого типа.
Недостатком этого генератора хаотических колебаний является то, что свойства хаотического аттрактора в нем определяются характеристиками единственного нелинейного элемента, что ограничивает возможности перестройки параметров генерируемых хаотических колебаний.
Целью изобретения является расширение пределов регулирования параметров хаотического сигнала путем расширения возможностей видоизменения конфигурации соответствующего ему хаотического аттрактора.
Цель изобретения достигается тем, что в генераторе хаотических колебаний, содержащем двухполюсный элемент с индуктивным сопротивлением, первый вывод которого соединен с первым входным выводом первого нелинейного преобразователя импеданса первого типа, второй входной вывод которого соединен с первым выводом резистора, второй вывод которого соединен с вторым выводом двухполюсного элемента с индуктивным сопротивлением и первым выводом первого двухполюсного элемента с емкостным сопротивлением, второй вывод которого соединен с первым выходным выводом первого нелинейного преобразователя импеданса первого типа и первым выводом второго двухполюсного элемента с емкостным сопротивлением, второй вывод которого соединен с вторым выходным выводом первого нелинейного преобразователя импеданса первого типа, передаточная характеристика первого нелинейного преобразователя импеданса первого типа определена уравнением
где i2(i1) - ток, протекающий через выходные выводы первого нелинейного преобразователя импеданса первого типа, i1 - ток, протекающий через входные выводы первого нелинейного преобразователя импеданса первого типа, , , I0 - граничный ток между средним, проходящим через начало координат, и боковыми участками передаточной характеристики, a и b - вещественные коэффициенты, имеющие противоположные знаки, M и N - целые неотрицательные числа, напряжение на первом входном выводе первого нелинейного преобразователя импеданса первого типа равно напряжению на первом выходном выводе первого нелинейного преобразователя импеданса первого типа, напряжение на втором входном выводе первого нелинейного преобразователя импеданса первого типа равно напряжению на втором выходном выводе первого нелинейного преобразователя импеданса первого типа, первый двухполюсный элемент с емкостным сопротивлением содержит первый линейный емкостный элемент, первый и второй выводы которого соединены соответственно с первым и вторым выводами первого нелинейного преобразователя импеданса второго типа, третий и четвертый выводы которого являются соответственно первым и вторым выводами первого двухполюсного элемента с емкостным сопротивлением, второй двухполюсный элемент с емкостным сопротивлением содержит второй линейный емкостный элемент, первый и второй выводы которого соединены соответственно с первым и вторым выводами второго нелинейного преобразователя импеданса второго типа, третий и четвертый выводы которого являются соответственно первым и вторым выводами второго двухполюсного элемента с емкостным сопротивлением, двухполюсный элемент с индуктивным сопротивлением содержит линейный индуктивный элемент, первый и второй выводы которого соединены соответственно с первым и вторым выводами второго нелинейного преобразователя импеданса первого типа, третий и четвертый выводы которого являются соответственно первым и вторым выводами двухполюсного элемента с индуктивным сопротивлением, переменный ток, протекающий в цепи первого двухполюсного элемента с емкостным сопротивлением, равен переменному току, протекающему в цепи первого линейного емкостного элемента, напряжение между выводами первого двухполюсного элемента с емкостным сопротивлением равно u1(uC1)=U0H1 (x), где uC1 - переменное напряжение на первом линейном емкостном элементе, U0=I0R, R - сопротивление резистора, ,
, d1, h1 и s1 - вещественные коэффициенты, причем d1>>1, M1 и N1 - целые неотрицательные числа, переменный ток, протекающий в цепи второго двухполюсного элемента с емкостным сопротивлением, равен переменному току, протекающему в цепи второго линейного емкостного элемента, напряжение между выводами второго двухполюсного элемента с емкостным сопротивлением равно u 2(uC2)=U0H2(y), где u C2 - переменное напряжение и на втором линейном емкостном элементе, ,
d2, h2 и s2 - вещественные коэффициенты, причем d2>>1, M2 и N2 - целые неотрицательные числа, переменное напряжение между выводами двухполюсного элемента с индуктивным сопротивлением равно переменному напряжению на линейном индуктивном элементе, ток, протекающий в цепи двухполюсного элемента с индуктивным сопротивлением, равен i(iL)=I0H3 (z), где iL - переменный ток, протекающий в цепи линейного индуктивного элемента, ,
d3, h3 и s3 - вещественные коэффициенты, причем d3>>1, M3 и N3 - целые неотрицательные числа.
С целью получения повышенной точности и температурной стабильности первый нелинейный преобразователь импеданса первого типа содержит усилитель напряжения, инвертирующий вход которого соединен с первым входным выводом первого нелинейного преобразователя импеданса первого типа и первым выводом нелинейного двухполюсника, второй вывод которого соединен с первым выходом усилителя напряжения и первым выводом линейного двухполюсника, второй вывод которого соединен с первым выходным выводом первого нелинейного преобразователя импеданса первого типа и неинвертирующим входом усилителя напряжения, второй выход которого соединен с вторым входным и вторым выходным выводами первого нелинейного преобразователя импеданса первого типа и общей шиной, второй нелинейный преобразователь импеданса первого типа содержит усилитель напряжения, инвертирующий вход которого соединен с вторым входом второго нелинейного преобразователя импеданса первого типа и первым выводом нелинейного двухполюсника, второй вывод которого соединен с первым выходом усилителя напряжения и первым выводом резистора, второй вывод которого соединен с вторым выходным выводом второго нелинейного преобразователя импеданса первого типа и неинвертирующим входом усилителя напряжения, второй выход которого соединен с первым входным и первым выходным выводами второго нелинейного преобразователя импеданса первого типа, каждый нелинейный преобразователь импеданса второго типа содержит усилитель напряжения, неинвертирующий вход которого соединен с первым входным и первым выходным выводами нелинейного преобразователя импеданса второго типа, второй входной вывод которого соединен с первым выходом усилителя напряжения и первым выводом резистора, второй вывод которого соединен с инвертирующим входом усилителя напряжения и первым выводом нелинейного двухполюсника, второй вывод которого соединен с вторым выходом усилителя напряжения и вторым выходным выводом нелинейного преобразователя импеданса второго типа, каждый нелинейный двухполюсник содержит 1+2Max(Q,R) последовательно включенных активных четырехполюсников, где Max(Q,R) - большее из чисел Q и R, которые равны соответственно M и N в нелинейном двухполюснике, входящем в состав первого нелинейного преобразователя импеданса первого типа, M1 и N1 в нелинейном двухполюснике, входящем в состав первого нелинейного преобразователя импеданса второго типа, M2 и N2 в нелинейном двухполюснике, входящем в состав второго нелинейного преобразователя импеданса второго типа, M3 и N3 в нелинейном двухполюснике, входящем в состав второго нелинейного преобразователя импеданса первого типа, первый и второй выводы первого активного четырехполюсника соединены соответственно с первым и вторым выводами нелинейного двухполюсника и выходами соответствующих первого и второго генераторов тока нелинейного двухполюсника, общие шины которых соединены с первой шиной питания, третий и четвертый выводы каждого предыдущего активного четырехполюсника соединены соответственно с первым и вторым выводами последующего активного четырехполюсника, третий и четвертый выводы последнего, 1+2Max(Q,R)-го, активного четырехполюсника соединены с соответствующими первым и вторым выводами резистора, линейный двухполюсник содержит резистор, первый и второй выводы которого, являющиеся соответствующими первым и вторым выводами линейного двухполюсника, соединены с соответствующими третьим и четвертым выводами активного четырехполюсника, первый и второй выводы которого соединены с выходами соответствующих первого и второго генераторов тока линейного двухполюсника, общие шины которых соединены с первой шиной питания, каждый активный четырехполюсник содержит первый и второй транзисторы, эмиттеры которых, являющиеся соответствующими первым и вторым выводами активного четырехполюсника, соединены с соответствующими первым и вторым выводами первого резистора, коллектор первого транзистора соединен с эмиттером третьего транзистора и базой четвертого транзистора, эмиттер которого соединен с коллектором пятого транзистора и первым выводом второго резистора, второй вывод которого соединен с базой пятого транзистора и первым выводом третьего резистора, второй вывод которого соединен с эмиттером пятого транзистора, базой второго транзистора и выходом первого генератора тока, общая шина которого соединена с первой шиной питания и общей шиной второго генератора тока, выход которого соединен с базой первого транзистора, эмиттером шестого транзистора и первым выводом четвертого резистора, второй вывод которого соединен с базой шестого транзистора и первым выводом пятого резистора, второй вывод которого соединен с коллектором шестого транзистора и эмиттером седьмого транзистора, база которого соединена с коллектором второго транзистора и эмиттером восьмого транзистора, база и коллектор которого соединены с четвертым выводом активного четырехполюсника и выходом третьего генератора тока, общая шина которого соединена с коллекторами четвертого и седьмого транзисторов, второй шиной питания и общей шиной четвертого генератора тока, выход которого соединен с базой и коллектором третьего транзистора и третьим выводом активного четырехполюсника, каждый усилитель напряжения содержит первый и второй транзисторы усилителя, базы которых являются соответствующими неинвертирующим и инвертирующим входами усилителя напряжения, эмиттер первого транзистора усилителя соединен с коллектором третьего транзистора усилителя и базой четвертого транзистора усилителя, эмиттер которого соединен с выходом первого генератора тока усилителя и эмиттером третьего транзистора усилителя, база которого соединена с коллектором четвертого транзистора усилителя и эмиттером второго транзистора усилителя, коллектор которого соединен с базой пятого транзистора усилителя и эмиттером шестого транзистора усилителя, база и коллектор которого соединены с выходом второго генератора тока усилителя и базой седьмого транзистора усилителя, эмиттер которого соединен с коллектором первого транзистора усилителя, эмиттер пятого транзистора усилителя соединен с коллектором восьмого транзистора усилителя и первым выводом первого резистора усилителя, второй вывод которого соединен с базой восьмого транзистора усилителя и первым выводом второго резистора усилителя, второй вывод которого соединен с эмиттером восьмого транзистора усилителя, выходом третьего генератора тока усилителя и первым выходом усилителя напряжения, коллектор пятого транзистора усилителя соединен с выходом четвертого генератора тока усилителя и эмиттером девятого транзистора усилителя, коллектор которого соединен с выходом пятого генератора тока усилителя и вторым выходом усилителя напряжения, база девятого транзистора усилителя соединена с третьей шиной питания, общие шины первого, третьего и пятого генераторов тока усилителя соединены с первой шиной питания, общие шины второго и четвертого генераторов тока усилителя соединены с коллектором седьмого транзистора и с второй шиной питания.
Заявляемый генератор хаотических колебаний поясняется фиг.1, на которой изображена его схема электрическая принципиальная, фиг.2, на которой показано распределение токов и напряжений в схеме генератора при его работе, фиг.3, на которой приведена схема электрическая принципиальная первого нелинейного преобразователя импеданса первого типа, фиг.4, на которой приведена схема электрическая принципиальная второго нелинейного преобразователя импеданса первого типа, фиг.5, на которой приведена схема электрическая принципиальная первого и второго нелинейных преобразователей импеданса второго типа, фиг.6, на которой приведена схема электрическая принципиальная нелинейного двухполюсника, фиг.7, на которой приведена схема электрическая принципиальная активного четырехполюсника, фиг.8, на которой приведена схема электрическая принципиальная усилителя напряжения, фиг.9, на которой изображена безразмерная передаточная характеристика первого нелинейного преобразователя импеданса первого типа при M=0, N=1, фиг.10, на которой приведена безразмерная передаточная характеристика первого и второго нелинейных преобразователей импеданса второго типа и второго нелинейного преобразователя импеданса первого типа, фиг.11, на которой приведен пример проекции безразмерного странного аттрактора на плоскость (х, y) при M1=N1=М2=N2 =M3=N3=0, М=0, N=1, a=20, b=-3, A=0.5, B=1.9, фиг.12, иллюстрирующей механизм образования простейшего составного мультиаттрактора при N1=1, M1 =M2=N2=M3=N3=0, М=0, N=1, a=20, b=-3, A=0.5, B=1.9, фиг.13, иллюстрирующей механизм образования составного мультиаттрактора при M1 =N1=2, М2=N2=M3=N 3=0, М=0, N=1, a=20, b=-3, A=0.5, B=1.9, фиг.14, иллюстрирующей механизм образования составного мультиаттрактора при M2=N2=2, M1=N1 =M3=N3=0, M=0, N=1, a=20, b=-3, A=0.5, B=1.9, фиг.15, иллюстрирующей механизм образования составного мультиаттрактора при М3=N3=2, M1 =N1=M2=N2=0, М=0, N=1, a =20, b=-3, A=0.5, B=1.9, фиг.16, на которой приведено трехмерное изображение безразмерного странного аттрактора при M=0, N=1, a=20, b=-3, A=0.5, B=1.9, M1=N1=M 2=N2=M3=N3=1, d1 =d2=d3=10, h1 6.7, h2 22.2, h3 23.4, s1=0, s2 -7.5, s3 -7.7, фиг.17, 18 и 19 на которых приведены примеры проекции этого аттрактора на плоскости (x, y), (x, z) и (y, z) соответственно, фиг.20, 21 и 22 на которых приведены соответствующие хаотическому аттрактору на фиг.16 примеры временных зависимостей безразмерных x, y и z, фиг.23, на которой показано распределение токов и напряжений в схеме первого и второго нелинейных преобразователей импеданса второго типа при их работе, фиг.24, на которой показано распределение токов и напряжений в схеме второго нелинейного преобразователя импеданса первого типа при его работе.
Генератор хаотических колебаний содержит первый 1 и второй 2 двухполюсные элементы с емкостным сопротивлением, двухполюсный элемент с индуктивным сопротивлением 3, резистор 4, первый нелинейный преобразователь импеданса первого типа 5, первый двухполюсный элемент с емкостным сопротивлением содержит первый линейный емкостный элемент 6 и первый нелинейный преобразователь импеданса второго типа 7, второй двухполюсный элемент с емкостным сопротивлением содержит второй линейный емкостный элемент 8 и второй нелинейный преобразователь импеданса второго типа 9, двухполюсный элемент с индуктивным сопротивлением содержит линейный индуктивный элемент 10 и второй нелинейный преобразователь импеданса первого типа 11, первый нелинейный преобразователь импеданса первого типа содержит усилитель напряжения 12, линейный двухполюсник 13 и нелинейный двухполюсник 14, второй нелинейный преобразователь импеданса первого типа содержит усилитель напряжения 15, резистор 16 и нелинейный двухполюсник 17, каждый нелинейный преобразователь импеданса второго типа содержит усилитель напряжения 18, резистор 19 и нелинейный двухполюсник 20, линейный двухполюсник содержит резистор 21, активный четырехполюсник 22, первый 23 и второй 24 генераторы тока линейного двухполюсника, нелинейный двухполюсник содержит резистор 25, активные четырехполюсники 26, первый 27 и второй 28 генераторы тока нелинейного двухполюсника, каждый активный четырехполюсник содержит первый 29, второй 30, третий 31, четвертый 32, пятый 33, шестой 34, седьмой 35 и восьмой 36 транзисторы, первый 37, второй 38, третий 39, четвертый 40 и пятый 41 резисторы, первый 42, второй 43, третий 44 и четвертый 45 генераторы тока, каждый усилитель напряжения содержит первый 46, второй 47, третий 48, четвертый 49, пятый 50, шестой 51, седьмой 52, восьмой 53 и девятый 54 транзисторы усилителя, первый 55 и второй 56 резисторы усилителя, первый 57, второй 58, третий 59, четвертый 60 и пятый 61 генераторы тока усилителя.
Запишем уравнения, описывающие работу данного генератора (см. фиг.2):
где C1 и C2 - емкости первого 6 и второго 8 линейных емкостных элементов; L - индуктивность линейного индуктивного элемента 10; R - сопротивление резистора 4; uC1 и uC2 - переменные напряжения на первом 6 и втором 8 линейных емкостных элементах соответственно; iC1 и iC2 - переменные токи, протекающие в цепях первого 6 и второго 8 линейных емкостных элементов соответственно; u L и iL - переменное напряжение на линейном индуктивном элементе 10 и протекающий через него переменный ток соответственно.
Учитывая, что , , , и разрешив уравнения (1) относительно производных , и , получим следующую систему дифференциальных уравнений:
Вводя безразмерные переменные , , и безразмерное время , представим полученные уравнения в безразмерном виде:
где ; ;
- безразмерная передаточная характеристика первого нелинейного преобразователя импеданса первого типа, w=H 3(z), H1(x) - безразмерная передаточная характеристика первого нелинейного преобразователя импеданса второго типа, Н 2(y) - безразмерная передаточная характеристика второго нелинейного преобразователя импеданса второго типа, H3 (z) - безразмерная передаточная характеристика второго нелинейного преобразователя импеданса первого типа.
Изображение функции Hj(wj), где j=1, 2, 3, w1 =x, w2=y, w3=z, приведено на фиг.10. Видно, что она представляет собой кусочно-линейную многосегментную функцию, содержащую Mj+Nj+1 сегментов с единичным наклоном и Mj+Nj сегментов с наклоном -d j. Протяженность по аргументу (x, y или z) сегментов с единичным наклоном равна 2hj, протяженность по аргументу сегментов с наклоном -dj равна 2hj/d j. Коэффициент sj задает величину смещения функции Hj(wj) относительно начала координат вдоль проходящего через начало координат сегмента с единичным наклоном.
Такая нелинейность вольт-амперных характеристик реактивных элементов схемы генератора необходима для того, чтобы обеспечить условия формирования составного мультиаттрактора.
В случае линейных первого 1 и второго 2 емкостных и индуктивного 3 двухполюсных элементов (при M1=N1=M 2=N2=M3=N3=0, когда H 1(x)=x, Н2(y)=y, H3(z)=z) заявленный генератор хаотических колебаний генерирует хаотические колебания, соответствующие уравнениям:
Например, при M=0, N=0, а=20, b=-3, А=0.5, В=1.9, М1=N1=M2=N 2=M3=N3=0, старший характеристический показатель Ляпунова приблизительно равен 0.15 (фиг.11).
Положим теперь M1=1, оставив N1=M2 =N2=M3=N3=0. При этом функция H1(x) примет вид, показанный на фиг.12. В этом случае вид колебаний в генераторе будет зависеть от значений коэффициентов h1 и s1, задающих положение границ между сегментами нелинейной функции H1(x).
Пока границы не пересекаются с аттрактором, колебания в генераторе ничем не отличаться от случая линейной функции H1(х)=х, так как движение по координате х происходит на сегменте функции H1(х) с единичным наклоном, проходящим через начало координат. Однако при уменьшении h1 до 6.7, когда максимальные размеры аттрактора по координате х превысят соответствующие размеры этого сегмента, фазовые траектории будут иногда пересекать границу между сегментами и переходить на сегмент с наклоном -d и далее на соседний сегмент с единичным наклоном.
При нахождении рабочей точки в пределах второго линейного сегмента с единичным наклоном, колебания в генераторе происходят в соответствии с уравнениями:
так как второй линейный сегмент с единичным наклоном смещен относительно первого такого сегмента по оси х на интервал [2h1-s1].
Если произвести замену переменных x1=x-2h1+s1 и учесть, что , получим систему уравнений
которая ничем не отличается от уравнений (1). Поэтому при движении на соседнем (втором) сегменте с единичным наклоном воспроизводится исходный хаотический аттрактор, смещенный относительно исходного аттрактора на интервал [2h1 -s1] по оси x.
Когда траектория вновь пересечет границу между сегментами, движение возвратится на исходный хаотический аттрактор и т.д. В результате образуется составной хаотический аттрактор, объединяющий два одинаковых аттрактора (фиг.12). Аналогично образуется составной мультиаттрактор при большем числе сегментов в составе функции H1(х) (фиг.13).
Таким же образом происходит образование составных мультиаттракторов, состоящих из копий исходного аттрактора, упорядоченных вдоль осей y и z, - для этого служат нелинейности второго нелинейного преобразователя импеданса второго типа и второго нелинейного преобразователя импеданса первого типа (фиг.14 и фиг.15 соответственно).
Если одновременно нелинейными являются две функции Hj(wj), описанным образом реализуются «двумерные» составные мультиаттракторы (фиг.17, 18 и 19).
И, наконец, когда все три функции Hj(wj ) содержат несколько сегментов с единичным наклоном, образуется «трехмерный» составной мультиаттрактор, пример которого показан на фиг.16 описания изобретения.
Значения старшего характеристического показателя Ляпунова при различных значениях коэффициентов уравнений (3), соответствующих рассмотренным выше ситуациям, равны:
при M=0, N=1, a=20, b=-3, А=0.5, В=1.9
- в случае M1=N 1=M2=N2=M3=N3 =0 (фиг.12) старший характеристический показатель Ляпунова приблизительно равен 0.15;
- в случае M1=N1 =1, M2=N2=M3=N3=0, d1=30, h1 6.7, s1=0 (фиг.13) старший характеристический показатель Ляпунова приблизительно равен 0.16;
- в случае M2=N2=1, M1=N 1=M3=N3=0, d2=30, h 2 22.2, s2 -7.5 (фиг.14) старший характеристический показатель Ляпунова приблизительно равен 0.16;
- в случае M3 =N3=1, M1=N1=M2=N 2=0, d3=30, h3 23.4, s3 -7.7 старший характеристический показатель Ляпунова приблизительно равен 0.16;
- в случае M1=N1 =M2=N2=M3=N3=1, d 1=d2=d3=30, h1 6.7, h2 22.2, h3 23.4, s1=0, s2 -7.5, s3 -7.7 старший характеристический показатель Ляпунова близок к 0.17.
При данных значениях коэффициентов a, b, A, B, M, N, Mj, Nj, dj , hj, sj, j=1, 2, 3 в заявленном генераторе наблюдаются хаотические колебания, характеризующиеся наличием композиционного странного мультиаттрактора, состоящего из нескольких копий хаотического аттрактора, показанного на фиг.11.
Параметры передаточной характеристики первого нелинейного преобразователя импеданса первого типа равны , , , где R3 - сопротивление резистора 21, входящего в состав линейного двухполюсника 13; R4 - сопротивление первого резистора 37, содержащегося в активном четырехполюснике 22, входящем в состав линейного двухполюсника 13; R5 - сопротивление первого резистора 37, содержащегося в первом активном четырехполюснике 26, входящем в состав нелинейного двухполюсника 14, содержащегося в первом нелинейном преобразователе импеданса первого типа; R6 - значение входящего в состав нелинейного двухполюсника 14 сопротивления резистора 25 и сопротивлений первых резисторов 37, содержащихся в остальных, со второго по 1+2Max(M,N)-й, активных четырехполюсниках 26, входящих в состав нелинейного двухполюсника 14, содержащегося в первом нелинейном преобразователе импеданса первого типа.
При M=N ток I1 равен значению выходных токов третьего 44 и четвертого 45 генераторов тока, входящих в состав активных четырехполюсников 26, содержащихся в нелинейном двухполюснике 14, входящем в состав первого нелинейного преобразователя импеданса первого типа. При этом значение выходных токов I 2 генераторов тока 27 и 28, содержащихся в нелинейном двухполюснике 14, входящем в состав первого нелинейного преобразователя импеданса первого типа, определяется выражением I2=KI1 , где К=1+2Max(M,N) - количество активных четырехполюсников 26 в составе нелинейного двухполюсника 14, входящего в состав первого нелинейного преобразователя импеданса первого типа. Значение выходных токов I3 третьего 44 и четвертого 45 генераторов тока, входящих в состав активного четырехполюсника 22, содержащегося в линейном двухполюснике 13, равно значению выходных токов I 4 содержащихся в нем генераторов тока 23 и 24, I3 =I4. Причем значения токов I3 и I4 определяются выражением I3=I4 2I2.
Случай M>N отличается от случая M=N тем, что выходные токи третьих генераторов тока 44, входящих в состав 2(M-N)-го и 2(M-N)-1-го активных четырехполюсников 26, содержащихся в нелинейном двухполюснике 14, входящем в состав первого нелинейного преобразователя импеданса первого типа, соответственно увеличиваются и уменьшаются на одинаковую величину I=(0.7 0.9)I1.
Случай N>M отличается от случая M=N тем, что выходные токи четвертых генераторов тока 45, входящих в состав 2(N-M)-го и 2(N-M)-1-го активных четырехполюсников 26, содержащихся в нелинейном двухполюснике 14, входящем в состав первого нелинейного преобразователя импеданса первого типа, соответственно увеличиваются и уменьшаются на одинаковую величину I=(0.7 0.9)I1.
Параметры передаточной характеристики j-го нелинейного преобразователя импеданса второго типа равны , , , , , при условии, что , где R7j - сопротивление резистора 19, входящего в состав j-го нелинейного преобразователя импеданса второго типа; R8j - сопротивление первого резистора 37, содержащегося в первом активном четырехполюснике 26, входящем в состав нелинейного двухполюсника 20, содержащегося в j-м нелинейном преобразователе импеданса второго типа; R9j - значение сопротивления входящего в состав нелинейного двухполюсника 20 резистора 25 и сопротивлений первых резисторов 37, содержащихся в остальных, со второго по 1+2Max(Mj,Nj)-й, активных четырехполюсниках 26, входящих в состав нелинейного двухполюсника 20, содержащегося в j-м нелинейном преобразователе импеданса второго типа.
При Mj=Nj токи I1j и J1j равны значениям выходных токов соответственно третьих 44 и четвертых 45 генераторов тока, входящих в состав нечетных, за исключением первого, активных четырехполюсников 26, и значениям выходных токов соответственно четвертых 45 и третьих 44 генераторов тока, входящих в состав четных активных четырехполюсников 26, содержащихся в нелинейном двухполюснике 20, входящем в состав j-го нелинейного преобразователя импеданса второго типа. При этом значение выходных токов I 2j генераторов тока 27 и 28, содержащихся в нелинейном двухполюснике 20, входящем в состав j-го нелинейного преобразователя импеданса второго типа, определяется выражением I2j =Kj(I1j+J1j)+I3j, где Kj=Max(Mj,Nj), I3j - значение выходных токов третьего 44 и четвертого 45 генераторов тока, входящих в состав первого активного четырехполюсника 26, содержащегося в нелинейном двухполюснике 20, входящем в состав j-го нелинейного преобразователя импеданса второго типа, причем ток I3j в несколько раз больше тока Max(I1j ,J1j), где Max(I1j,J1j) - наибольший из токов I1j и J1j, то есть I3j =(2 5)Max(I1j,J1j).
Случай Mj<Nj отличается от случая Mj =Nj тем, что выходной ток третьего 44 генератора тока, входящего в состав 1+2(Nj-Mj)-го активного четырехполюсника 26, содержащегося в нелинейном двухполюснике 20, входящем в состав j-го нелинейного преобразователя импеданса второго типа, устанавливается равным току I3j, а выходной ток третьего 44 генератора тока, входящего в состав первого активного четырехполюсника 26, содержащегося в нелинейном двухполюснике 20, входящем в состав j-го нелинейного преобразователя импеданса второго типа, устанавливается равным току I1j.
Случай Nj<Mj отличается от случая Mj=Nj тем, что выходной ток четвертого 45 генератора тока, входящего в состав 1+2(Mj-N j)-го активного четырехполюсника 26, содержащегося в нелинейном двухполюснике 20, входящем в состав j-го нелинейного преобразователя импеданса второго типа, равен току I3j, а выходной ток четвертого 45 генератора тока, входящего в состав первого активного четырехполюсника 26, содержащегося в нелинейном двухполюснике 20, входящем в состав j-го нелинейного преобразователя импеданса второго типа, устанавливается равным току J1j.
Параметры передаточной характеристики второго нелинейного преобразователя импеданса первого типа равны , , , , , притом что , где R10 - сопротивление резистора 16, входящего в состав нелинейного преобразователя тока; R11 - сопротивление первого резистора 37, содержащегося в первом активном четырехполюснике 26, входящем в состав нелинейного двухполюсника 17, содержащегося во втором нелинейном преобразователе импеданса первого типа; R12 - значение входящего в состав нелинейного двухполюсника 17 сопротивления резистора 25 и сопротивлений первых резисторов 37, содержащихся в остальных, со второго по 1+2Max(M3 ,N3)-й, активных четырехполюсниках, входящих в состав нелинейного двухполюсника 17, содержащегося во втором нелинейном преобразователе импеданса первого типа.
При M 3=N3 токи I13 и J13 равны значениям выходных токов соответственно четвертых 45 и третьих 44 генераторов тока, входящих в состав нечетных, за исключением первого, активных четырехполюсников 26, и значениям выходных токов соответственно третьих 44 и четвертых 45 генераторов тока, входящих в состав четных активных четырехполюсников 26, содержащихся в нелинейном двухполюснике 17, входящем в состав второго нелинейного преобразователя импеданса первого типа. При этом значение выходных токов I23 генераторов тока 27 и 28, содержащихся в нелинейном двухполюснике 17, входящем в состав второго нелинейного преобразователя импеданса первого типа, определяется выражением I23=K3(I13+J13)+I 33, где K3=Max(M3,N3), I33 - значение выходных токов третьего 44 и четвертого 45 генераторов тока, входящих в состав первого активного четырехполюсника 26, содержащегося в нелинейном двухполюснике 17, входящем в состав второго нелинейного преобразователя импеданса первого типа, причем ток I33 в несколько раз больше тока Max(I13 ,J13), где Max(I13,J13) - наибольший из токов I13 и J13, то есть I33 =(2 5)Max(I13,J13).
Случай M3<N3 отличается от случая M3 =N3 тем, что выходной ток третьего 44 генератора тока, входящего в состав 1+2(N3-М3)-го активного четырехполюсника 26, содержащегося в нелинейном двухполюснике 17, входящем в состав второго нелинейного преобразователя импеданса первого типа, устанавливается равным току I33, а выходной ток третьего 44 генератора тока, входящего в состав первого активного четырехполюсника 26, содержащегося в нелинейном двухполюснике 17, входящем в состав второго нелинейного преобразователя импеданса первого типа, устанавливается равным току J13.
Случай N3<M3 отличается от случая M3=N3 тем, что выходной ток четвертого 45 генератора тока, входящего в состав 1+2(M3-N 3)-го активного четырехполюсника 26, содержащегося в нелинейном двухполюснике 17, входящем в состав второго нелинейного преобразователя импеданса первого типа, равен току I33, а выходной ток четвертого 45 генератора тока, входящего в состав первого активного четырехполюсника 26, содержащегося в нелинейном двухполюснике 17, входящем в состав второго нелинейного преобразователя импеданса первого типа, устанавливается равным току I13.
Сопротивления второго 38, третьего 39, четвертого 40 и пятого 41 резисторов и выходные токи первого 42 и второго 43 генераторов тока, содержащихся в каждом активном четырехполюснике, связаны следующими соотношениями I5R14=(1.2 2)Uбэ, R13=(1 10)R14, где R13 - значение сопротивлений второго 38 и пятого 41 резисторов, R14 - значение сопротивлений третьего 39 и четвертого 40 резисторов, I5 - значение выходных токов первого 42 и второго 43 генераторов тока, Uбэ - значение базо-эмиттерного напряжения пятого 33 и шестого 34 транзисторов, входящих в состав активного четырехполюсника.
Выходные токи генераторов тока, содержащихся в усилителе напряжения, должны удовлетворять следующим соотношениям: Iyl=2Iy2, I y3+Iy5=Iy4, где Iy1 - выходной ток первого 57 генератора тока усилителя, Iy2 - выходной ток второго 58 генератора тока усилителя, Iy3 - выходной ток третьего 59 генератора тока усилителя, I y4 - выходной ток четвертого 60 генератора тока усилителя, Iy5 - выходной ток пятого 61 генератора тока усилителя. Причем значения токов Iy3 и Iy5 должны быть в несколько раз больше значения выходных токов первого 27 и второго 28 генераторов тока, содержащихся в нелинейном двухполюснике, входящем в состав нелинейного преобразователя импеданса вместе с данным усилителем напряжения.
Сопротивления первого 55 и второго 56 резисторов усилителя и выходной ток третьего 59 генератора тока, содержащихся в усилителе напряжения, связаны следующими соотношениями: Iy3R15=(1.2 2)Uбэ, R15=(1 15)R16, где R15 и R16 - значения сопротивлений первого 55 и второго 56 резисторов усилителя, Uбэ - значение базо-эмиттерного напряжения восьмого 53 транзистора усилителя.
Первый и второй нелинейные преобразователи импеданса второго типа (фиг.23) представляют собой преобразователи импеданса, изменяющие импеданс путем преобразования напряжения (U-ПИ). Они работают следующим образом. Каждый из них содержит дифференциальный усилитель напряжения с высоким коэффициентом усиления, имеющий дополнительный токовый выход. Усилитель имеет высокие входные сопротивления по обоим входам и низкое выходное сопротивление по первому выходу. Дополнительный (второй) выход представляет собой выход повторителя тока, с высоким выходным сопротивлением. Его назначение - генерировать ток, равный току, протекающему через первый, низкоомный, выход усилителя, так, чтобы переменный ток, втекающий в первый выход усилителя, был равен переменному току, вытекающему из второго выхода усилителя (фиг.23).
С учетом того, что разность потенциалов между входами усилителя напряжения и его входные токи пренебрежимо малы, падение напряжений на резисторе R1 равно падению напряжений на линейном емкостном элементе (конденсаторе), следовательно, ток i1, протекающий в этом резисторе, равен uC/R1; этот же ток протекает в цепи нелинейного резистора RНЛ, напряжение на котором зависит от величины протекающего через него тока i1 , а следовательно, от напряжения на конденсаторе uНЛ (i1)=uНЛ(uC/R1).
Вследствие пренебрежимо малой разности потенциалов между входами усилителя, напряжение между первым и вторым выходами нелинейного преобразователя импеданса второго типа равно падению напряжений на нелинейном резисторе uНЛ(uC/R1). При этом ток, протекающий через конденсатор, равен сумме тока i 1, протекающего в цепи резисторов R1 и RНЛ, и тока iC-i1, протекающего в цепи первого и второго выходов усилителя. Поэтому через выход нелинейного преобразователя импеданса второго типа протекает ток, равный току, протекающему через линейный емкостный элемент (фиг.23).
Таким образом, при подключении линейного емкостного элемента к внешней цепи через нелинейный преобразователь импеданса второго типа, через выходы преобразователя протекает ток, равный току, протекающему в линейном емкостном элементе, а падение напряжений между выходами преобразователя равно uНЛ(uC /R1). В случае первого нелинейного преобразователя импеданса второго типа u1(uC1)=uНЛ(u C1/R1), в случае второго нелинейного преобразователя импеданса второго типа u2(uC2)=uНЛ(u C2/R1). То есть совокупность конденсатора и нелинейного преобразователя импеданса второго типа образует эквивалентный нелинейный емкостный элемент с заданной вольт-амперной характеристикой.
Второй нелинейный преобразователь импеданса первого типа представляет собой преобразователь импеданса, изменяющий импеданс путем преобразования тока (I-ПИ), который работает следующим образом (фиг.24). Он содержит такой же усилитель, что и первый и второй нелинейные преобразователи импеданса второго типа. Так как разность потенциалов между входами усилителя пренебрежимо мала, напряжение между выходами второго нелинейного преобразователя импеданса первого типа равно напряжению на линейном индуктивном элементе (например, катушке индуктивности), кроме этого равны напряжения на линейном и нелинейном резисторах. Через нелинейный резистор протекает ток, равный току в цепи линейного индуктивного элемента. В результате на нелинейном резисторе возникает зависящее от величины тока в линейном индуктивном элементе падение напряжений uНЛ(iL), под действием которого в цепи линейного резистора протекает ток i(iL)=uНЛ (iL)/R1. При этом на первый, низкоомный, выход усилителя поступает ток iL-i(iL), этот же ток вытекает из второго выхода усилителя и в сумме с током iL поступает во внешнюю цепь. То есть во внешнюю цепь поступает ток, протекающий в цепи линейного резистора i(iL).
Таким образом, при подключении линейного индуктивного элемента к внешней цепи через второй нелинейный преобразователь импеданса первого типа, через выходы преобразователя протекает ток i(iL ), а между ними падает напряжение uL. То есть совокупность линейной индуктивности и второго нелинейного преобразователя импеданса первого типа образует эквивалентный нелинейный индуктивный элемент с требуемой вольт-амперной характеристикой.
Примером практической реализации заявленного генератора хаотических колебаний может служить схема, имеющая следующие параметры.
Пусть R=1000 Ом, C1=0.02 мкФ, R3=1500 Ом, R5=500 Ом, R71=R72=R10=1033 Ом, I0=120 мкА. Тогда в случае M1=N1=M2 =N2=M3=N3=1, d1=d 2=d3=30, h1 6.7, h2 22.2, h3 23.7, s1=0, s2 -7.5, s3 -7.7, при M=0, N=1, a=20, b=-3, A=0.5, B=1.9, хаотические колебания, соответствующие этим параметрам уравнений (3), наблюдаются при следующих номиналах колебательной системы генератора: C2 0.01 мкФ, L1 52.6 мГн, первого нелинейного преобразователя импеданса первого типа: R4 150 Ом, R6 440 Ом, I1 0.9 мА, I2 2.7 мА, I3=I4 6 мА, первого нелинейного преобразователя импеданса второго типа: R81 31 кОм, R91 1 кОм, I11 0.8 мА, I21 5.6 мА, I31 4 мА, второго нелинейного преобразователя импеданса второго типа: R82 31 кОм, R92 1 кОм, I12 1.8 мА, J12 3.7 мА, I22 25.5 мА, I32 20 мА, второго нелинейного преобразователя импеданса первого типа: R11 31 кОм, R12 1 кОм, I13 1.8 мА, J13 4.8 мА, I23 36.6 мА, I33 30 мА, усилителя напряжения: R15 15 кОм, R16 1 кОм, Iy1 400 мкА, Iy2 200 мкА, Iy3=Iy5 15 мА, Iy4 30 мА, элементов цепей смещения постоянного напряжения в нелинейных преобразователях импеданса: R13 5 кОм, R14 1 кОм, I5 2 мА.
Соответствующие этим значениям параметров генератора примеры безразмерного странного аттрактора, его проекций на плоскости (х, y), (x, z) и (y, z), а также примеры зависимостей безразмерных переменных х, y и z от времени приведены на фиг.16-22.
Повышенная точность и температурная стабильность нелинейных преобразователей импеданса обусловлены тем, что их передаточные характеристики практически не зависят от параметров транзисторов, вследствие взаимной компенсации эмиттерных сопротивлений транзисторов 29 и 31, а также 30 и 36 в составе активных четырехполюсников, а также благодаря повышению коэффициента усиления и минимизации разности постоянных напряжений на инвертирующем и неинвертирующем входах усилителя напряжения за счет введения транзисторов 46, 47 и 50, 51.
Таким образом, заявленный генератор хаотических колебаний выгодно отличается от прототипа и аналогов, в которых перестройка хаотического сигнала возможна только за счет изменения параметров исходного хаотического аттрактора, тем, что он позволяет реализовать составной хаотический мультиаттрактор, получаемый объединением исходного хаотического аттрактора с одной или более его копиями, вследствие чего его перестройку можно дополнительно осуществлять изменением количества и взаимного расположения входящих в его состав компонентов, благодаря чему заявленный генератор обладает значительно большими возможностями перестройки параметров генерируемого хаотического сигнала.
Класс H03B29/00 Генерирование токов и напряжений шумов