способ определения базовой динамической грузоподъемности шарикового подшипника качения
Классы МПК: | G01M13/04 испытание подшипников |
Автор(ы): | Матлин Михаил Маркович (RU), Мозгунова Анна Ивановна (RU), Стариков Андрей Алексеевич (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) (RU) |
Приоритеты: |
подача заявки:
2010-02-17 публикация патента:
27.06.2011 |
Изобретение относится к машиностроению и может быть использовано, в частности, для определения базовой динамической грузоподъемности (долговечности) подшипниковых узлов машин с шариковыми подшипниками качения. Технический результат - повышение точности определения базовой динамической грузоподъемности шарикового подшипника качения. Способ определения базовой динамической грузоподъемности шарикового подшипника качения заключается в том, что в подшипнике измеряют диаметр шарика Dw, диаметр окружности d m, проходящий через центры шариков, измеряют число рядов i и число z шариков в одном ряду, номинальный угол контакта подшипника, наименьшее значение пластической твердости материала дорожки качения кольца подшипника НД. Определяют для кольца с наименьшим значением пластической твердости, с учетом диаметра шарика, сумму кривизн в контакте шарика и дорожки качения кольца подшипника, отношение b/a меньшей полуоси к большей площадке контакта шарика с дорожкой качения кольца подшипника, имеющего наименьшее значение пластической твердости, измеряют базовый предел контактной выносливости HG материала дорожки качения кольца подшипника, имеющего наименьшее значение пластической твердости, и рассчитывают, с учетом суммы кривизн в контакте шарика с кольцом подшипника и упругих констант материалов шарика и кольца подшипника, максимальную динамическую нагрузку на шарик. 2 з.п. ф-лы, 2 табл.
Формула изобретения
1. Способ определения базовой динамической грузоподъемности шарикового подшипника качения, заключающийся в том, что в подшипнике измеряют диаметр шарика Dw, диаметр окружности d m проходящий через центры шариков, измеряют число рядов i и число z шариков в одном ряду, измеряют номинальный угол контакта подшипника и определяют базовую динамическую грузоподъемность шарикового подшипника качения, отличающийся тем, что определяют наименьшее значение пластической твердости материала дорожки качения кольца подшипника НД, и определяют для кольца с наименьшим значением пластической твердости, с учетом диаметра шарика, сумму кривизн в контакте шарика и дорожки качения кольца подшипника, определяют отношение b/a меньшей полуоси к большей площадке контакта шарика с дорожкой качения кольца подшипника, имеющего наименьшее значение пластической твердости, измеряют базовый предел контактной выносливости HG материала дорожки качения кольца подшипника, имеющего наименьшее значение пластической твердости и определяют, с учетом суммы кривизн в контакте шарика с кольцом подшипника и упругих констант материалов шарика и кольца подшипника, максимальную динамическую нагрузку на шарик по формуле
где Рдин - максимальная динамическая нагрузка на шарик;
- постоянная кривой контактной выносливости кольца подшипника, имеющего наименьшее значение пластической твердости;
HG - базовый предел контактной выносливости материала дорожки качения кольца подшипника, имеющего наименьшее значение пластической твердости;
НД - наименьшее значение пластической твердости материала дорожки качения кольца подшипника;
- сумма кривизн в контакте шарика и дорожки качения кольца подшипника, имеющего наименьшее значение пластической твердости;
- коэффициент, учитывающий упругие характеристики контактирующих материалов;
µ1,2 и E1,2 - соответственно коэффициент Пуассона и модуль нормальной упругости (индексы 1 и 2 относятся к материалам шарика и кольца подшипника соответственно);
а1 - коэффициент скорректированной долговечности для расчета надежности, отличной от 90%;
z - число шариков в одном ряду;
t - поправочный коэффициент (t=1 - для наружного кольца, t=0,5 - для внутреннего кольца).
n - коэффициент, зависящий от соотношения кривизн в контакте шарика с дорожкой качения кольца подшипника;
p=1,7452-0,4074b/a - показатель степени, учитывающий угол наклона начального участка кривой контактной выносливости, построенной в двойных логарифмических координатах;
b/a - отношение меньшей полуоси к большей площадке контакта шарика с дорожкой качения кольца подшипника, имеющего наименьшее значение пластической твердости.
2. Способ определения базовой динамической грузоподъемности шарикового подшипника качения по п.1, отличающийся тем, что для радиальных и радиально-упорных подшипников базовую динамическую грузоподъемность определяют по формуле
где С - базовая динамическая грузоподъемность шарикового подшипника качения;
Рдин - максимальная динамическая нагрузка на шарик;
z - число шариков в одном ряду;
- коэффициент, учитывающий распределение нагрузки в многорядном подшипнике ( =1 - для однорядного подшипника, =i0,7 - для многорядного подшипника);
i - число рядов шариков в подшипнике;
0,2 - коэффициент, соответствующий распределению нагрузки между шариками при нормальном зазоре в подшипнике;
Dw - диаметр шарика;
dm=(D+d)/2 - диаметр окружности проходящий через центры шариков;
D - наружный диаметр подшипника;
d - внутренний диаметр подшипника;
- номинальный угол контакта подшипника;
p - показатель степени, учитывающий угол наклона начального участка кривой контактной выносливости, построенной в двойных логарифмических координатах;
знак «-» принимается при неподвижном наружном кольце, знак «+» - при неподвижном внутреннем кольце подшипника.
3. Способ определения базовой динамической грузоподъемности шарикового подшипника качения по п.1, отличающийся тем, что для упорных и упорно-радиальных подшипников базовую динамическую грузоподъемность определяют по формуле
С=Р дин zsin ,
где С - базовая динамическая грузоподъемность шарикового подшипника качения;
Рдин - максимальная динамическая нагрузка на шарик;
z - число шариков;
- номинальный угол контакта подшипника.
Описание изобретения к патенту
Изобретение относится к машиностроению и может быть использовано, в частности, для определения базовой динамической грузоподъемности (допустимой динамической нагрузки) подшипниковых узлов машин с шариковыми подшипниками качения.
Известен способ определения нагрузок на подшипник качения (по а.с. № 1730548, G01M 13/04, опубл. 30.04.92. бюл. № 16), заключающийся в том, что измеряют перед установкой подшипника в корпус подшипникового узла средний диаметр и длину образующей тел качения и определяют расчетным путем динамическую грузоподъемность подшипника при заданных коэффициенте динамической грузоподъемности подшипника, числе тел качения, среднем диаметре и угле контакта тел и поверхностей качения в подшипнике. Дополнительно измеряют профили поверхности качения наружного кольца подшипника до и после установки кольца в корпус, определяют разность отклонений от круглости формы поверхностей качения до и после установки подшипника в корпус и рассчитывают динамическую грузоподъемность подшипникового узла по соответствующей формуле.
Недостаток данного способа заключается в том, что он не позволяет определять базовую динамическую грузоподъемность шариковых подшипников в общем случае для фактических кривизн контактирующих поверхностей, отличных от стандартных; для различных твердостей материалов шариков и колец качения (если она отличается от твердости, принятой в ГОСТ 18855-94); способ не учитывает базовый предел контактной выносливости материала дорожек качения. Это ограничивает применение описанного способа при подборе шариковых подшипников качения.
Наиболее близким по технической сущности является способ определения базовой динамической грузоподъемности подшипников качения (по ГОСТ 18855-94 «Подшипники качения. Динамическая расчетная грузоподъемность и расчетный ресурс (долговечность)». Введен в действие с 01.01.1997 г.), заключающийся в том, что в подшипнике с определенными упругими константами µ и E материалов деталей измеряют диаметр шарика Dw, измеряют диаметр окружностей dm, проходящий через центры шариков, измеряют число рядов i и число z шариков в одном ряду, измеряют номинальный угол контакта подшипника, а базовую динамическую грузоподъемность шарикового подшипника качения определяют по формулам:
- для радиальных и радиально-упорных подшипников
при Dw 25,4 мм
при Dw>25,4 мм
- для упорных и упорно-радиальных подшипников
при Dw 25,4 мм
при Dw>25,4 мм
где bm - коэффициент, характеризующий свойства стали с учетом способа ее изготовления (меняется в зависимости от типа и конструкции подшипника);
fc - коэффициент, зависящий от геометрии деталей подшипника, точности их изготовления и материала;
Dw - диаметр шарика;
i - число рядов шариков в подшипнике;
z - число шариков в одном ряду;
- номинальный угол контакта подшипника.
Принципиальный недостаток данного способа заключается в том, что он не позволяет определять базовую динамическую грузоподъемность шариковых подшипников в общем случае для фактических кривизн контактирующих поверхностей; для различных твердостей материалов шариков и колец качения (если она отличается от твердости, принятой в ГОСТ 18855-94); способ не учитывает базовый предел контактной выносливости материала дорожек качения. Как указано в ГОСТ 18855-94 на стр.2, этот способ справедлив только в диапазоне размеров стандартных подшипников, которые изготовлены из высококачественной, закаленной стали в условиях хорошо налаженного производства, имеют обычную конструкцию и формы контактных поверхностей; при этом способ не распространяется на конструкции подшипников, в которых тела качения работают непосредственно на поверхности вала или корпуса, если эта поверхность не является эквивалентной во всех отношениях поверхностям подшипника с наружным или внутренним кольцами.
Таким образом, известные способы имеют низкий технический уровень, поскольку не позволяют определять базовую динамическую грузоподъемность шариковых подшипников качения, если их размеры, форма контактных поверхностей, материал деталей и их твердость отличаются от предусмотренных для стандартных подшипников. Следует под черкнуть, что необходимость использования нестандартных подшипников качения (а следовательно, и необходимость определения их базовой динамической грузоподъемности) возникает достаточно часто, например, при проектировании крупногабаритных опорно-поворотных устройств или устройств, в которых функцию колец качения могут выполнять корпус или вал устройства.
В этой связи важнейшей задачей является создание нового универсального способа определения базовой динамической грузоподъемности шариковых подшипников качения, который был бы справедлив как для стандартных подшипников, так и для подшипников с произвольным сочетанием конструкции деталей подшипников, твердости применяемых материалов, формы и размеров контактных поверхностей.
Технический результат - повышение точности определения базовой динамической грузоподъемности шарикового подшипника качения.
Указанный технический результат заключается в том, что в подшипнике измеряют диаметр шарика Dw, диаметр окружности d m, проходящий через центры шариков, измеряют число рядов i и число z шариков в одном ряду, измеряют номинальный угол контакта подшипника и определяют базовую динамическую грузоподъемность шарикового подшипника качения, определяют наименьшее значение пластической твердости материала дорожки качения кольца подшипника НД, и определяют для кольца с наименьшим значением пластической твердости, с учетом диаметра шарика, сумму кривизн в контакте шарика и дорожки качения кольца подшипника, определяют отношение b/a меньшей полуоси к большей площадке контакта шарика с дорожкой качения кольца подшипника, имеющего наименьшее значение пластической твердости, измеряют базовый предел контактной выносливости HG материала дорожки качения кольца подшипника, имеющего наименьшее значение пластической твердости, и определяют, с учетом суммы кривизн в контакте шарика с кольцом подшипника и упругих констант материалов шарика и кольца подшипника, максимальную динамическую нагрузку на шарик по формуле:
где Рдин - максимальная динамическая нагрузка на шарик;
К - постоянная кривой контактной выносливости кольца подшипника, имеющего наименьшее значение пластической твердости
HG - базовый предел контактной выносливости материала дорожки качения кольца подшипника, имеющего наименьшее значение пластической твердости;
НД - наименьшее значение пластической твердости материала дорожки качения кольца подшипника;
- сумма кривизн в контакте шарика и дорожки качения кольца подшипника, имеющего наименьшее значение пластической твердости;
k1,2 - коэффициент, учитывающий упругие характеристики контактирующих материалов
µ1,2 и E1,2 - соответственно коэффициент Пуассона и модуль нормальной упругости (индексы 1 и 2 относятся к материалам шарика и кольца подшипника соответственно);
a1 - коэффициент скорректированной долговечности для расчета надежности, отличной от 90%;
z - число шариков в одном ряду;
t - поправочный коэффициент (t=1 - для наружного кольца, t=0,5 - для внутреннего кольца);
n - коэффициент, зависящий от соотношения кривизн в контакте шарика с дорожкой качения кольца подшипника;
p - показатель степени, учитывающий угол наклона начального участка кривой контактной выносливости, построенной в логарифмических координатах
p=1,7452-0,4074b/a;
b/a - отношение меньшей полуоси к большей площадке контакта шарика с дорожкой качения кольца подшипника, имеющего наименьшее значение пластической твердости.
При этом для радиальных и радиально-упорных подшипников базовую динамическую грузоподъемность определяют по формуле
где C - базовая динамическая грузоподъемность шарикового подшипника качения;
Pдин - максимальная динамическая нагрузка на шарик;
z - число шариков в одном ряду;
- коэффициент, учитывающие распределение нагрузки в многорядном подшипнике ( =1 - для однорядного подшипника, =i0,7 - для многорядного подшипника);
i - число рядов шариков в подшипнике;
0,2 - коэффициент, соответствующий распределению нагрузки между шариками при нормальном зазоре в подшипнике;
Dw - диаметр шарика;
dm - диаметр окружности, проходящий через центры шариков
dm=(D+d)/2;
D - диаметр наружного кольца подшипника;
d - диаметр внутреннего кольца подшипника;
- номинальный угол контакта подшипника;
p - показатель степени, учитывающий угол наклона начального участка кривой контактной выносливости, построенной в логарифмических координатах;
Знак «-» в формуле (5) принимается при неподвижном наружном кольце, знак «+» - при неподвижном внутреннем кольце подшипника.
Для упорных и упорно-радиальных подшипников базовую динамическую грузоподъемность определяют по формуле
где C - базовая динамическая грузоподъемность шарикового подшипника качения;
Pдин - максимальная динамическая нагрузка на шарик;
z - число шариков;
- номинальный угол контакта подшипника.
Существенным отличием предлагаемого способа является то, что определяют значение пластической твердости материала дорожки качения внутреннего и наружного колец подшипника и находят ее наименьшее значение НД. Это позволяет определить то из колец подшипника, у которого постоянная кривой контактной выносливости материала кольца подшипника наименьшая, а следовательно, и контактное выкрашивание (питтинг) начнется раньше.
Существенным отличием предлагаемого способа является то, что измеряют базовый предел контактной выносливости HG материала дорожки качения кольца подшипника, имеющего наименьшее значение пластической твердости. Это позволяет определить число циклов нагружения (а следовательно, долговечность) в контакте шарика с кольцом качения, имеющего наименьшее значение пластической твердости, соответствующее динамической грузоподъемности подшипника качения.
Существенным отличием предлагаемого способа является то, что измеряют кривизны дорожек качения колец подшипника (или деталей, их заменяющих) и определяют с учетом диаметра шарика сумму кривизн в контакте шарика и дорожки качения кольца подшипника. Это позволяет при определении максимальной удельной динамической нагрузки на шарик учесть фактические размеры контактирующих поверхностей.
Новым является и впервые предложенный авторами параметр - постоянная K кривой контактной выносливости кольца подшипника, имеющего наименьшее значение пластической твердости, которая позволяет комплексно оценить контактную выносливость подшипника качения, другими словами, ресурс подшипника с учетом его прочностных свойств (НД и HG).
Совокупность отличительных признаков предлагаемого способа и новые взаимосвязи, установленные авторами между ними, позволили предложить новую зависимость для определения максимальной динамической нагрузки подшипника качения. Это позволяет при определении базовой динамической грузоподъемности шарикового подшипника качения одновременно учитывать упругие константы материалов шарика и кольца подшипника, а также прочностные свойства материала кольца подшипника, имеющего наименьшее значение пластической твердости, что позволяет повысить точность определения базовой динамической грузоподъемности шарикового подшипника качения.
Способ определения базовой динамической грузоподъемности шарикового подшипника качения реализуется следующим образом.
Определяют значение пластической твердости материала дорожки качения первого (внутреннего) кольца подшипника НД 1, второго (наружного) кольца подшипника НД2 и находят меньшее ее значение НД. Определение пластической твердости НД материала колец подшипника выполняют по ГОСТ 18835-73 «Металлы. Метод определения измерения пластической твердости»; эта методика описана также в книге «Инженерные расчеты упругопластической контактной деформации», авторы: (М.С.Дрозд, М.М.Матлин, Ю.И.Сидякин) - М.: Машиностроение, 1986. - 224 с. на стр.16-19. Дополнительно укажем, что пластическую твердость НД можно определить путем непосредственного измерения других чисел твердости, например твердости по Роквеллу HRCЭ, которую обычно используют при контроле деталей подшипника, с последующим пересчетом по формуле
Измеряют диаметр Dw шарика подшипника и кривизны дорожки качения менее твердого кольца подшипника (или деталей, их заменяющих) в сечениях двумя плоскостями главных кривизн.
Определяют отношение b/a меньшей полуоси к большей площадке контакта шарика с дорожкой качения кольца подшипника, имеющего наименьшее значение пластической твердости, по формуле
b/a=nb/na,
значение коэффициентов na, nb можно определить по книге «Расчеты на прочность в машиностроении» в 3-х т.Т.2 / С.Д.Пономарев, В.Л.Бидерман, К.К.Лихарев [и др.]; под ред. С.Д.Пономарева. - М.: Государственное научно-техническое издательство машиностроительной литературы. - 1958. - 655 с., на стр.425, табл.14 в зависимости от соотношения кривизн контактирующих деталей (шарика и дорожки качения кольца, имеющего наименьшее значение пластической твердости).
По найденному отношению b/a определяют показатель степени, учитывающий угол наклона кривой контактной выносливости, построенной в двойных логарифмических координатах, по формуле
Определяют базовый предел контактной выносливости HG материала дорожки качения кольца подшипника, имеющего наименьшее значение пластической твердости. Определение предела контактной выносливости можно выполнить экспериментально или определить по следующей формуле, справедливой для стальных контактирующих деталей
По измеренным величинам НД, HG и p определяют по формуле (6) постоянную кривой контактной выносливости кольца подшипника, имеющего наименьшее значение пластической твердости, которая в комплексе учитывает все измеренные выше величины
.
Определяют сумму кривизны в контакте шарика и дорожки качения кольца подшипника, имеющего наименьшее значение пластической твердости, по формуле
где Ri,j - радиус кривизны дорожки качения кольца подшипника в сечениях двумя плоскостями главных кривизн. Индекс i относится к одному из колец (1 - первое (наружное) кольцо, 2 - второе (внутреннее) кольцо). Индекс j относится к одной из двух плоскости главных кривизн;
знаки «+» и «-» относятся соответственно к случаям контакта шарика подшипника с дорожкой качения кольца подшипника, сечение ограничено выпуклым или вогнутым контурами.
Измеряют упругие константы шарика (E1 и µ1) и каждого кольца (или детали его заменяющего) подшипника (E2 и µ2). Если материалы указанных деталей известны заранее, то модуль нормальной упругости E можно определить по «Справочнику по машиностроительным материалам» в 4-х т. / Под ред. Г.И.Погодина-Алексеева, - М.: Машиностроение, 1959, а коэффициент Пуассона µ - по справочной таблице, приведенной, например, в книге М.П.Марковец «Определение механических свойств металла по твердости». - М.: Машиностроение, 1979. - 191 с., на стр.38, табл.6.
Вычисляют значения коэффициентов k1 и k2 по формулам
и .
Измеряют номинальный угол контакта подшипника.
Задаются коэффициентом а1, корректирующим долговечность для расчета надежности, отличной от 90%. Данный коэффициент можно определить, например, по таблице 12, приведенной в ГОСТ 18855-94 на стр.27.
Задаются значением поправочного коэффициента t (t=1 - для наружного кольца, t=0,5 - для внутреннего кольца).
Определяют значение коэффициента n , зависящего от соотношения кривизн в контакте шарика с дорожкой качения кольца подшипника, имеющего наименьшее значение пластической твердости. Значение коэффициента можно определить по «Расчетам на прочность в машиностроении» в 3-х т. Т.2 / С.Д.Пономарев, В.Л.Бидерман, К.К.Лихарев [и др.]; под ред С.Д.Пономарева. - М.: Государственное научно-техническое издательство машиностроительной литературы. - 1958. - 655 с., на стр.425, табл.14 либо по формуле
.
Измеряют число рядов i и число z шариков в одном ряду.
По измеренным и определенным выше величинам определяют максимальную динамическую нагрузку на шарик по формуле
.
Определяют коэффициент , учитывающий распределение нагрузки в многорядном подшипнике ( =1 - для однорядного подшипника, =i0,7 - для многорядного подшипника).
Измеряют наружный диаметр подшипника D и внутренний диаметр подшипника d. По измеренным величинам определяют диаметр окружностей, проходящий через центры шариков, dm по формуле
dm=(D+d)/2.
С учетом Pдин определяют базовую динамическую грузоподъемность шарикового подшипника качения по формулам (7) и (8):
- для радиальных и радиально-упорных подшипников
- для упорных и упорно-радиальных подшипников
.
Пример. Проведена экспериментальная проверка предложенного способа.
Определение базовой динамической грузоподъемности шарикового подшипника качения выполнили как для стандартных подшипников качения (которые согласно ГОСТ 18855-94 изготовлены из высококачественной, закаленной стали в условиях хорошо налаженного производства, имеют обычную конструкцию и формы контактных поверхностей); так и для подшипников, твердость материала и формы контактных поверхностей которых отличаются от стандартных.
В таблице 1 приведены основные размеры и физико-механические свойства ряда исследованных стандартных и нестандартных подшипников. В таблице 2 представлены значения базовой динамической грузоподъемности различных шариковых подшипников качения. Экспериментальные значения долговечности (с последующим переводом в динамическую грузоподъемность Cэ) определяли на специальном стенде. Стенд выполнен по схеме, аналогичной схеме, описанной в книге Орлова А.А., Черменского О.Н., Нестерова В.М. «Испытания конструкционных материалов на контактную усталость». - М.: Машиностроение, 1980. - 110 с., на с.55, рис.15. Следует отметить, что схема нагружения соответствовала схеме нагружения «качение с проскальзыванием». При этом исходили из того, что согласно ГОСТ 18855-94 (см. стр.3) базовая динамическая грузоподъемность - это постоянная нагрузка, которую подшипник теоретически может воспринять при базовом расчетном ресурсе, составляющем один миллион оборотов.
Как видно из таблицы 2, погрешность определения базовой динамической грузоподъемности шарикового подшипника качения по сравнению с экспериментом составляет:
- у предлагаемого способа не более 2% для стандартных радиальных и радиально-упорных подшипников, (1-3)% для стандартных упорных подшипников; для нестандартных радиальных и радиально-упорных подшипников погрешность предлагаемого способа не превышает (4-5)%, а для нестандартных упорных подшипников и для нестандартных подшипников не превышает 6%;
- у способа-прототипа погрешность для стандартных подшипников указанных типов составляет (2-3)%, расчет по способу-прототипу завышает динамическую грузоподъемность подшипника от 1,5 раз (55%) (см. подшипник № 6 в табл.2) до 6,6 раз (600%) (см. подшипник № 8 в табл.2). При этом, как видно из таблицы 2, погрешность способа-прототипа особенно существенно возрастает с уменьшением твердости материала колец подшипника. Таким образом, способ-прототип не пригоден для определения динамической грузоподъемности шариковых подшипников с параметрами, отличными от стандартных подшипников.
Таблица 2 | |||||||||
Значения базовой динамической грузоподъемности шарикового подшипника качения, определенные по предлагаемому способу (C), способу-прототипу (Cn) и найденные экспериментально (Сэ) | |||||||||
п/п | Предлагаемый способ | Способ-прототип Cn, H (по форм.1 или 2) | Эксперимент Cэ, H | Погрешность | |||||
K | Pдин | C, H | C/Cэ | Cn/C э | |||||
1 | 3060 | 0,083 | 2,245*10 11 | 36330 | 68150 | 71500 | 69200 | 0,98 | 1,03 |
2 | 3336 | 0,06 | 2,199*10 11 | 81830 | 134900 | 136000 | 135500 | 0,99 | 1,01 |
3 | 3081 | 0,168 | 2,075*10 11 | 3570 | 67830 | 66300 | 67300 | 1,01 | 0,99 |
4 | 1961 | 0,042 | 7,324*10 10 | 241630 | 130470 | 255000 | 135000 | 0,96 | 1,89 |
5 | 1934 | 0,043 | 5,546*10 10 | 131580 | 58170 | 163000 | 61000 | 0,95 | 2,67 |
6 | 2128 | 0,059 | 8,389*10 10 | 32640 | 60290 | 229000 | 64300 | 0,94 | 3,56 |
7 | 1731 | 0,033 | 3,018*10 10 | 50060 | 72550 | 313000 | 74300 | 0,98 | 4,21 |
8 | 1462 | 0,068 | 2,296*10 10 | 3030 | 39390 | 276000 | 42100 | 0,94 | 6,56 |
Примечание | |||||||||
1. Номера подшипников в таблице 2 соответствуют номерам подшипников в таблице 1. | |||||||||
2. После определения значений пластической твердости материала дорожки качения первого (внутреннего) кольца подшипника НД 1, второго (наружного) кольца подшипника НД2 находят меньшее ее значение НД. |
Использование предлагаемого способа по сравнению с известными обеспечивает следующие преимущества.
Способ обладает достаточно высокой точностью: погрешность определения базовой динамической грузоподъемности шарикового подшипника качения не превышает 6%.
В связи с этим предлагаемый способ позволяет повысить точность определения базовой динамической грузоподъемности нестандартных шариковых подшипников качения и тем самым повысить точность, надежность подшипниковых узлов, а значит, и качество машины в целом.
Предлагаемый способ является универсальным, поскольку пригоден для определения базовой динамической грузоподъемности как стандартных, так и нестандартных шариковых подшипников качения с произвольным сочетанием размеров и физико-механических свойств материалов деталей.
Таким образом, способ, воплощающий заявленное изобретение, предусматривает измерение пластической твердости материала дорожки качения колец подшипника и определение того из колец подшипника, у которого пластическая твердость наименьшая, измерение кривизн дорожек качения колец подшипника (или деталей, их заменяющих) в сечениях двумя плоскостями главных кривизн и определение суммы кривизн в контакте шарика и дорожки качения кольца подшипника, имеющего наименьшее значение пластической твердости, определение отношения меньшей полуоси к большей площадке контакта шарика с дорожкой качения кольца подшипника, имеющего наименьшее значение пластической твердости, измерение базового предела контактной выносливости материала дорожки качения кольца подшипника, имеющего наименьшее значение пластической твердости. С учетом упругих констант материалов шарика и кольца подшипника определяют максимальную динамическую нагрузку на шарик, по которой судят о базовой динамической грузоподъемности шариковых подшипников качения. Способ предназначен для использования в промышленности для определения одной из важнейших характеристик подшипника - базовой динамической грузоподъемности, которая используется для определения нагрузочной способности и долговечности подшипника.
Класс G01M13/04 испытание подшипников