бортовая система управления температурой электронагревателя печи с режимами нагрев - стабилизация температуры - охлаждение
Классы МПК: | G05B11/01 электрические H05B6/06 управление, например температурой, мощностью |
Автор(ы): | Сыров Анатолий Сергеевич (RU), Пучков Александр Михайлович (RU), Бровкин Александр Григорьевич (RU), Жданович Надежда Павловна (RU), Спиридович Леонид Борисович (RU) |
Патентообладатель(и): | Федеральное государственное унитарное предприятие Московское опытно-конструкторское бюро "Марс" (ФГУП МОКБ "Марс") (RU) |
Приоритеты: |
подача заявки:
2009-12-17 публикация патента:
27.06.2011 |
Изобретение относится к системам автоматического управления электронагревателями печей для получения инфраструктуры на космических станциях. Технический результат заключается в повышении точности управления. Он достигается тем, что предложена бортовая система управления температурой электронагревателя печи с режимами нагрев -стабилизация температуры - охлаждение, которая содержит задатчик сигнала начальной температуры нагрева, задатчик сигнала скорости охлаждения, задатчик сигнала скорости основного и корректирующего нагрева, три элемента сравнения, управляемый ограничитель сигнала, четыре усилителя, гистерезисный релейный элемент положительной полярности, три управляемых ключа, сумматор, элемент дифференцирования, интегратор, датчик температуры и блок управления режимами. 2 ил.
Формула изобретения
Бортовая система управления электронагревателя печи для получения инфраструктуры с режимами нагрев - стабилизация температуры - охлаждение, содержащая задатчик сигнала начальной температуры нагрева, первый элемент сравнения последовательно соединенные первый усилитель и второй элемент сравнения и последовательно соединенные датчик температуры, выход которого соединен со входом первого элемента сравнения, элемент дифференцирования и второй усилитель, выход которого соединен со вторым входом второго элемента сравнения, отличающаяся тем, что в нее введены управляемый ограничитель сигнала, вход которого соединен с выходом первого элемента сравнения, а выход - со входом первого усилителя, гистерезисный релейный элемент положительной полярности, первый вход которого соединен с выходом второго элемента сравнения, а выход является выходом системы управления, последовательно соединенные задатчик сигналов скорости основного и корректирующего нагрева, первый управляемый ключ и третий усилитель, выход которого соединен со вторым входом управляемого ограничителя сигнала, последовательно соединенные второй управляемый ключ, вход которого соединен со вторым выходом задатчика сигналов скорости основного и корректирующего нагрева, и сумматор, второй вход которого соединен с выходом первого управляемого ключа, а выход - со вторым входом гистерезисного релейного элемента положительной полярности, четвертый усилитель, вход которого соединен с выходом первого управляемого ключа, а выход - с третьим входом гистерезисного релейного элемента положительной полярности, последовательно соединенные задатчик сигнала скорости охлаждения, третий управляемый ключ, интегратор и третий элемент сравнения, второй вход которого соединен с выходом задатчика сигнала начальной температуры нагрева, а выход - со вторым входом первого элемента сравнения, вторые вход и выход третьего управляемого ключа соединены соответственно со вторым выходом задатчика сигналов скорости основного и корректирующего нагрева и с третьим входом сумматора, и блок управления режимами, первый выход которого соединен со вторым входом первого управляемого ключа, второй выход - со вторым входом второго управляемого ключа, третий выход - с третьим входом третьего управляемого ключа.
Описание изобретения к патенту
Изобретение относится к системам автоматического управления электронагревателями печей для получения инфраструктуры на космических станциях.
Наиболее близким к предлагаемому изобретению является бортовая система управления, содержащая задатчик сигнала начальной температуры нагрева, первый элемент сравнения, последовательно соединенные первый усилитель и второй элемент сравнения и последовательно соединенные датчик температуры, выход которого соединен со входом первого элемента сравнения, элемент дифференцирования и второй усилитель, выход которого соединен со вторым входом второго элемента сравнения [1].
Недостатками известного решения, принятого за прототип, являются ограниченность функциональных возможностей управления и невысокая точность по температурной и скоростной характеристикам, по статической погрешности и перерегулированию, к которым предъявляются жесткие требования по допускам. Это обстоятельство, в частности, определило отрицательные свойства пропорционально-интегрально-дифференцирующего принципа, не обеспечивающего стабильность всех режимов: нагрева, стабилизации температуры и охлаждения.
Решаемой технической задачей является расширение функциональных возможностей системы управления и повышение точности управления.
Указанный технический результат достигается тем, что в известную бортовую систему управления, содержащую задатчик сигнала начальной температуры нагрева, первый элемент сравнения, последовательно соединенные первый усилитель и второй элемент сравнения, и последовательно соединенные датчик температуры, выход которого соединен со входом первого элемента сравнения, элемент дифференцирования и второй усилитель, выход которого соединен со вторым входом второго элемента сравнения, дополнительно введены управляемый ограничитель сигнала, вход которого соединен с выходом первого элемента сравнения, а выход - со входом первого усилителя, гистерезисный релейный элемент положительной полярности, первый вход которого соединен с выходом второго элемента сравнения, а выход является выходом системы управления, последовательно соединенные задатчик сигналов скорости основного и корректирующего нагрева, первый управляемый ключ и третий усилитель, выход которого соединен со вторым входом управляемого ограничителя сигнала, последовательно соединенные второй управляемый ключ, вход которого соединен со вторым выходом задатчика сигналов скорости основного и корректирующего нагрева, и сумматор, второй вход которого соединен с выходом первого управляемого ключа, а выход - со вторым входом гистерезисного релейного элемента положительной полярности, четвертый усилитель, вход которого соединен с выходом первого управляемого ключа, а выход - с третьим входом гистерезисного релейного элемента положительной полярности, последовательно соединенные задатчик сигнала скорости охлаждения, третий управляемый ключ, интегратор и третий элемент сравнения, второй вход которого соединен с выходом задатчика сигнала начальной температуры нагрева, а выход - со вторым входом первого элемента сравнения, вторые вход и выход третьего управляемого ключа соединены соответственно со вторым выходом задатчика сигналов скорости основного и корректирующего нагрева и с третьим входом сумматора, и блок управления режимами, первый выход которого соединен со вторым входом первого управляемого ключа, второй выход - со вторым входом второго управляемого ключа, третий выход - с третьим входом третьего управляемого ключа.
На фиг.1 представлена структурная схема бортовой системы управления температурой электронагревателя печи для всех рассматриваемых режимов: нагрев, стабилизация температуры, охлаждение, на фиг.2 представлена характеристика гистерезисного релейного элемента положительной полярности.
Система управления содержит задатчик сигнала начальной температуры нагрева 1, первый элемент сравнения 2, последовательно соединенные первый усилитель 3 и второй элемент сравнения 4, последовательно соединенные датчик температуры 5, выход которого соединен со вторым входом первого элемента сравнения 3, элемент дифференцирования 6 и второй усилитель 7, выход которого соединен со вторым входом второго элемента сравнения 4, управляемый ограничитель сигнала 8, вход которого соединен с выходом первого элемента сравнения 2, а выход - со входом первого усилителя 3, гистерезисный релейный элемент положительной полярности 9, первый вход которого соединен с выходом второго элемента сравнения 4, а выход является выходом системы управления, последовательно соединенные задатчик сигналов скорости основного и корректирующего нагрева 10, первый управляемый ключ 11 и третий усилитель 12, выход которого соединен со вторым входом управляемого ограничителя сигнала 8, последовательно соединенные второй управляемый ключ 13, вход которого соединен со вторым выходом задатчика сигналов скорости основного и корректирующего нагрева 10, и сумматор 14, второй вход которого соединен с выходом первого управляемого ключа 11, а выход - со вторым входом гистерезисного релейного элемента положительной полярности 9, четвертый усилитель 15, вход которого соединен с выходом первого управляемого ключа 11, а выход - с третьим входом гистерезисного релейного элемента положительной полярности 9, последовательно соединенные задатчик сигнала скорости охлаждения 16, третий управляемый ключ 17, интегратор 18 и третий элемент сравнения 19, второй вход которого соединен с выходом задатчика начальной температуры нагрева 1, а выход - со вторым входом первого элемента сравнения 2, вторые вход и выход третьего управляемого ключа 17 соединены соответственно со вторым выходом задатчика сигналов скорости основного и корректирующего нагрева 10 и с третьим входом сумматора 14, и блок управления режимами 20, первый выход которого соединен со вторым входом первого управляемого ключа 11, второй выход - со вторым входом второго управляемого ключа 13, третий выход - с третьим входом третьего управляемого ключа 17. Пунктиром на схеме показан объект управления - электронагреватель печи.
Система управления работает следующим образом.
Блок управления режимами 20 формирует команды:
A1 - на замыкание первого управляемого ключа 11 для режима нагрева;
A2 - на замыкание второго ключа 13 для режима стабилизации температуры;
A3 - на замыкание третьего ключа 17 для режима охлаждения.
I. Режим нагрева
Задатчиком сигнала начальной температуры нагрева 1 задается сигнал Тзад.н..
Задатчиком скорости нагрева 10 задается скорость основного нагрева
Датчик температуры 5 (например, термопара) формирует сигнал текущей температуры нагревателя T(t).
Первый элемент сравнения 2 формирует рассогласование Т:
где
Для этого режима (нагрева) канал интегратора 18 отключен ключом 17, т.е.
Следовательно, Tзад.(t)=T зад.н..
Гибкая обратная связь по скорости изменения температуры формируется дифференцированием сигнала текущей температуры T(t) элементом дифференцирования 6 с соответствующим передаточным коэффициентом , выставляемым во втором усилителе 7.
Закон регулирования формируется по сигналам Тзад.н. блока 1, текущей температуры T(t) датчика 5 и скорости изменения температуры блока 6 с учетом передаточных чисел усилителей 3 и 7. Базовый сигнал управления 0(t) формируется на основе сигналов рассогласования по температуре и скорости изменения температуры блоками 1, 19, 2, 8, 3, 4, 6, 7 в виде:
где ( T) - функциональный сигнал по рассогласованию, формируемый блоками 8 и 3 следующим образом:
- блоком 8 ограничивается сигнал T с ограничением Fm (пояснение по расчету приведено ниже), т.е. текущий сигнал с блока 8 F( T) формируется в виде:
- сигнал ( T) формируется первым усилителем 3 сигнала F( T), т.е.
где KT - передаточный коэффициент первого усилителя 3.
Сигнал 0(t), сформированный в соответствии с базовым законом управления (4)÷(6), поступает на гистерезисный релейный элемент положительной полярности 9, сигнал с выхода которого u является выходным сигналом системы управления. Этот сигнал в релейном элементе 9 формируется функционально следующим образом. Зона нечувствительности 0 блока 9 в сочетании с коэффициентом усиления KT (усилителя 3) определяется, исходя из допустимости в контуре управления заданной статической ошибки (рассогласования) Тст.зад.:
Сигнал u формируется гистерезисным релейным элементом положительной полярности 9 согласно фиг, 2 в функции от сигнала 0 с выхода сумматора 14, т.е. равным нулю или Тзад.н.
В сумматор 14 поступают разновременно (порежимно) 3 сигнала от задатчика 10: для режима нагрева (основного) и для корректирующего нагрева в режимах стабилизации и охлаждения. Поступление сигналов регулируется блоком управления 20 и ключами 11, 13, 17.
Отрицательная зона нечувствительности 1 определена в прямопропорциональной зависимости от скорости нагрева блока 8 с учетом (7):
где K - коэффициент пропорциональности, выставленный в четвертом усилителе 15.
Относительно функционального ограничения Fm в ограничителе 8 следует отметить необходимость его определенной выставки в функции для исключения перерегулирования по текущей скорости изменения температуры
Действительно, пусть это требование выдерживается, тогда сигнал 0 определится по (4) и (5) в виде:
В пределах зоны нечувствительности 0 сигнал 0 должен быть в окрестности нуля. Следовательно,
Значение коэффициента для формирования ограничения Fm выставляется по (10) в третьем усилителе 12.
II. Режим стабилизации температуры
Этот режим состоит в поддержании достигнутой температуры нагрева (описанной в предыдущем разделе) в течение определенного фиксированного интервала времени. Начало режима определяется выдачей команды A2 из блока управления режимами 20 на замыкание второго управляемого ключа 13 и снятием соответственно команды A1 и размыканием первого управляемого ключа 11.
Физически этот режим характерен тем, что сформированы циклические чередующиеся фазы естественного охлаждения нагревателя и принудительного, так называемого корректирующего нагрева, определенного минимальной реально осуществимой скоростью нагрева . Этот сигнал от блока 10 через ключ 13 и сумматор 14 поступает на гистерезисный релейный элемент положительной полярности 9. Режим функционирует в пределах допустимого допуска температуры ± Tст.зад..
Для этого режима сигналы 0 для релейного элемента 9 (см. фиг.2) и F m для управляемого ограничителя сигнала 8 определены и выставлены минимальными, соответствующими минимальной скорости корректирующего нагрева
В основном контуре регулирования температуры для ее стабилизации по аналогии с режимами нагрева также задействованы блоки 1, 19, 2, 8, 3, 4, 9, 5, 6 и 7.
III. Режим охлаждения
Начало режима определяется командой A3 блока управления режимами 20 на замыкание ключа 17 по цепям сигналов задатчика сигнала скорости охлаждения 16 и задатчика 10. Одновременно снимается команда A3 и размыкается ключ 13 предыдущего режима - стабилизации.
Принципом режима является формирование идеальной требуемой температурной функции на основе исходной от предыдущего режима начальной температуры T0=Tзад.н. и заданной функции охлаждения - сигналу . блока 16, поступающего через ключ 17 на интегратор 18. Для этого с задатчика 1 на элемент сравнения 19 поступает сигнал Задатчиком сигнала скорости охлаждения 16 формируется сигнал требуемой скорости охлаждения который интегрируется на интеграторе 18 и выдается с него на третий элемент сравнения 19 в виде сигнала
Элемент сравнения 19 формирует функциональный заданный сигнал управления:
Элемент сравнения 2 формирует сигнал рассогласования T:
Дополнительным приемом является осуществление циклического естественного охлаждения и корректирующего нагрева в пределах допуска температуры ± Тст.зад. относительно сформированной идеальной температурной функции по (10), по существу аналогичных режиму стабилизации.
Сигнал корректирующего нагрева от блока 10 через ключ 17 и сумматор 14 поступает на гистерезисный релейный элемент положительной полярности 9.
Также по аналогии с режимом стабилизации для этого режима сигналы 0 для релейного элемента 9 (см. фиг.2) и F m для управляемого ограничителя сигнала 8 определены и выставлены минимальными, соответствующими минимальной скорости корректирующего нагрева
В основном контуре регулирования температуры для режима охлаждения по аналогии с режимами нагрева и стабилизации также задействованы блоки 1, 19, 2, 8, 3, 4, 9, 5, 6 и 7.
Режим охлаждения завершается снятием команды A 3 блока 20 и отключением ключа 17.
Таким образом, проведен полный температурный цикл электронагревателя: нагрев - стабилизация температуры - охлаждение.
Предложенная бортовая система управления электронагревателем печи для получения инфраструктуры на космической станции позволяет расширить функциональные возможности управления температурой электронагревателя для всех режимов - нагрева, стабилизации и охлаждения - в широком диапазоне условий по заданной температуре и скорости нагрева и охлаждения и обеспечить при этом достижение заданных характеристик с высокой точностью и без перерегулирования.
Положительный эффект предложения подтвержден результатами анализа и математического моделирования.
Все составные операции способа, звенья и блоки системы управления могут быть выполнены на современных элементах автоматики и вычислительной техники [2], а также и программно-алгоритмически в бортовых вычислительных машинах.
Источники информации
1. Д.П.Ким. Теория автоматического управления, том 1, М.: Физматлит, 2007, с.204-205.
2. А.У.Ялышев, О.И.Разоренов. Многофункциональные аналоговые регулирующие устройства автоматики. М.: Машиностроение, 1981, с.103.
Класс H05B6/06 управление, например температурой, мощностью