двигательная установка ракетного блока

Классы МПК:B64G1/00 Космические летательные аппараты
F02K9/60 конструктивные элементы; детали
Автор(ы):,
Патентообладатель(и):Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" (RU)
Приоритеты:
подача заявки:
2010-03-17
публикация патента:

Изобретение относится к ракетно-космической технике, а именно к двигательным установкам с пневмосистемами. Двигательная установка ракетного блока содержит бак окислителя, заполненный низкокипящим компонентом, бак горючего, заполненный высококипящим компонентом, маршевый двигатель, исполнительные органы, баллон высокого давления с газом, установленный в баке окислителя, теплообменное устройство, включающее упомянутый бак и установленные на нем трубопроводы-теплообменники. В состав теплообменного устройства введен ресивер и трубопровод-змеевик с тройником. Трубопровод-змеевик одним концом сообщен с ресивером, а другим - с общим выходом из трубопроводов-теплообменников. Ресивер и трубопровод-змеевик закреплены на баке горючего и имеют с ним тепловой контакт. Тройник в трубопроводе-змеевике установлен после выхода из трубопроводов-теплообменников. Боковой штуцер тройника сообщен с исполнительными органами двигательной установки. Трубопровод-змеевик и ресивер вместе с баком горючего размещены в объеме, закрытом общей экранно-вакуумной теплоизоляцией ракетного блока. Достигается снижение динамических свойств потока газового компонента и повышение надежности работы теплообменного устройства двигательной установки ракетного блока. 1 ил. двигательная установка ракетного блока, патент № 2423298

двигательная установка ракетного блока, патент № 2423298

Формула изобретения

Двигательная установка ракетного блока, содержащая бак окислителя, заполненный низкокипящим компонентом, бак горючего, заполненный высококипящим компонентом, маршевый двигатель, исполнительные органы, баллон высокого давления с газом, установленный в баке окислителя, теплообменное устройство, включающее упомянутый бак и установленные на нем трубопроводы-теплообменники, отличающаяся тем, что в состав теплообменного устройства введен ресивер и трубопровод-змеевик с тройником, трубопровод-змеевик одним концом сообщен с ресивером, а другим - с общим выходом из трубопроводов-теплообменников, ресивер и трубопровод-змеевик закреплены на баке горючего и имеют с ним тепловой контакт, тройник в трубопроводе-змеевике установлен после выхода из трубопроводов-теплообменников, боковой штуцер тройника сообщен с исполнительными органами двигательной установки, трубопровод-змеевик и ресивер вместе с баком горючего размещены в объеме, закрытом общей экранно-вакуумной теплоизоляцией ракетного блока.

Описание изобретения к патенту

Изобретение относится к ракетно-космической технике, а именно к двигательным установкам с пневмосистемами, в которых необходимо снизить динамику потока газового компонента.

Динамические свойства газового компонента негативно влияют на работоспособность (снижают ресурс и надежность) исполнительных органов (пневмоклапанов, электропневмоклапанов и др.), используемых в пневмосистемах.

Известна двигательная установка ракетного блока по патенту № 2286924 (прототип), содержащая топливный бак окислителя, заполненный низкокипящим компонентом, топливный бак горючего, заполненный высококипящим компонентом, маршевый двигатель, исполнительные органы двигательной установки, баллон высокого давления с газом, установленный в топливном баке окислителя, при этом теплообменное устройство состоит из бака горючего и установленных на нем трубопроводов-теплообменников, в которых производится подогрев газового компонента за счет тепла бака горючего, заполненного высококипящим топливом (например, керосином).

Прототип имеет следующие недостатки.

Поток газового компонента, поступая напрямую на исполнительные органы, расположенные в непосредственной близости от выхода из теплообменного устройства, имеет такие динамические свойства (высокая скорость, турбулентность), которые могут привести к нестабильной работе, к снижению ресурса и надежности исполнительных органов.

Кроме того, газовый компонент, необходимый для работы исполнительных органов двигательной установки, может храниться в баллонах, погруженных в криогенный окислитель (например, кислород) бака окислителя и имеет соответственно криогенную температуру. С помощью теплообменного устройства газовый компонент подогревается до температуры, при которой исполнительные органы двигательной установки могут надежно работать. В течение работы двигательной установки, обеспечивающей заданную траекторию полета, при небольших перерывах между запусками маршевого двигателя времени на подогрев криогенного компонента до заданной температуры может оказаться недостаточно.

Задачей предложенной двигательной установки ракетного блока является повышение надежности ее работы за счет снижения динамических свойств потока газового компонента на выходе из теплообменного устройства, а также за счет дополнительного подогрева поступающего из теплообменного устройства газового компонента до подачи его в исполнительные органы на всех этапах работы двигательной установки с использованием запасов тепла бака горючего.

Задача решается за счет того, что в двигательной установке ракетного блока, содержащей бак окислителя, заполненный низкокипящим компонентом, бак горючего, заполненный высококипящим компонентом, маршевый двигатель, исполнительные органы, баллон высокого давления с газом, установленный в баке окислителя, теплообменное устройство, включающее упомянутый бак горючего и установленные на нем трубопроводы-теплообменники, при этом в состав теплообменного устройства введен ресивер и трубопровод-змеевик с тройником. Трубопровод-змеевик одним концом сообщен с ресивером, а другим - с общим выходом из трубопроводов-теплообменников. Ресивер и трубопровод-змеевик закреплены на баке горючего и имеют с баком горючего тепловой контакт. Тройник в трубопроводе-змеевике установлен после общего выхода из трубопроводов-теплообменников, боковой штуцер тройника сообщен с исполнительными органами двигательной установки. Трубопровод-змеевик и ресивер вместе с баком горючего размещены в объеме, закрытом общей экранно-вакуумной теплоизоляцией ракетного блока.

На чертеже схематично изображена двигательная установка ракетного блока, где:

1. бак окислителя;

2. бак горючего;

3. маршевый двигатель;

4. трубопровод-змеевик;

5. баллон высокого давления;

6. тройник;

7. боковой штуцер тройника;

8. ресивер;

9. исполнительные органы;

10. трубопроводы-теплообменники;

11. экранно-вакуумная теплоизоляция;

12. выход из трубопроводов-теплообменников.

В двигательной установке ракетного блока, содержащей бак окислителя 1, заполненный низкокипящим компонентом, бак горючего 2, заполненный высококипящим компонентом, маршевый двигатель 3, исполнительные органы 9, баллон высокого давления 5, теплообменное устройство, включающее бак горючего 2 и установленные на нем трубопроводы-теплообменники 10, в состав теплообменного устройства введен ресивер 8 и трубопровод-змеевик 4 с тройником 6, трубопровод-змеевик 4 одним концом сообщен с ресивером 8, а другим - с общим выходом из трубопроводов-теплообменников 12. Ресивер 8 и трубопровод-змеевик 4 закреплены на баке горючего 2 и имеют с ним тепловой контакт; тройник 6 в трубопроводе-змеевике 4 установлен после общего выхода из трубопроводов-теплообменников 12, боковой штуцер тройника 7 сообщен с исполнительными органами 9 двигательной установки. Трубопровод-змеевик 4 и ресивер 8 вместе с баком горючего 2 размещены в объеме, закрытом общей экранно-вакуумной теплоизоляцией 11 ракетного блока, чем достигается дополнительный подогрев поступающего из теплообменного устройства газового компонента до подачи его в исполнительные органы 9 на всех этапах работы двигательной установки с использованием запасов тепла бака горючего 2.

Трубопровод-змеевик 4, тройник 6 и ресивер 8 обеспечивают снижение динамических свойств потока газового компонента за счет изменения направления движения потока.

При малых промежутках времени между запусками маршевого двигателя 3 двигательной установки ракетного блока газовый компонент не успевает приобрести стабильную температуру, необходимую для работы исполнительных органов 9, поэтому требуется дополнительное устройство для его подогрева.

Трубопровод-змеевик 4 и ресивер 8 (например, объемом 0,5 литра) получают тепло за счет непосредственного теплового контакта с баком горючего 2, заполненным высококипящим компонентом (например, керосином), имеющим запас тепла за счет большого объема высококипящего топлива и конструкции топливного бака 2, причем наличие экранно-вакуумной теплоизоляции 11, в тепловом пространстве которой находятся перечисленные выше элементы двигательной установки, обеспечивает сохранение тепла между пусками маршевого двигателя 3 ракетного блока.

В процессе работы двигательной установки, после запуска маршевого двигателя 3, газовый компонент из баллона высокого давления 5, погруженного в криогенный компонент бака окислителя 1, поступает в трубопроводы-теплообменники 10 теплообменного устройства и далее по трубопроводу-змеевику 4 - в ресивер 8, нагревается за счет теплового контакта и излучения тепла от бака горючего 2 и дополнительно подогретым используется для работы исполнительных органов 9 (например, электропневмоклапанов) двигательной установки.

Поток газового компонента из трубопроводов-теплообменников 10 напрямую поступает по трубопроводу-змеевику 4 в ресивер 8, теряет свои динамические свойства за счет многократного изменения направления своего движения и далее через боковой штуцер тройника 7 поступает в исполнительные органы 9. Аналогичный процесс происходит при каждом запуске маршевого двигателя 3 двигательной установки ракетного блока.

Повышение надежности работы двигательной установки ракетного блока достигается за счет снижения динамических свойств потока газового компонента на выходе из теплообменного устройства, а также за счет дополнительного подогрева поступающего из трубопроводов-теплообменников 10 теплообменного устройства газового компонента до подачи его в исполнительные органы 9 на всех этапах работы двигательной установки с использованием запасов тепла бака горючего 2.

Класс B64G1/00 Космические летательные аппараты

шариковый замок -  патент 2529250 (27.09.2014)
двухступенчатая аэрокосмическая система /варианты/ -  патент 2529121 (27.09.2014)
система хранения криогенной жидкости для космического аппарата -  патент 2529084 (27.09.2014)
устройство фиксации предметов в невесомости -  патент 2528516 (20.09.2014)
фиксатор предметов в невесомости -  патент 2528509 (20.09.2014)
развертываемое тормозное устройство для спуска в атмосфере планет -  патент 2528506 (20.09.2014)
страховочное устройство для условий невесомости -  патент 2528504 (20.09.2014)
устройство фиксации предметов в невесомости -  патент 2528497 (20.09.2014)
способ обеспечения переносимости космонавтами эксплуатационных и аварийных перегрузок в космическом летательном аппарате -  патент 2527615 (10.09.2014)
кресло космонавта -  патент 2527603 (10.09.2014)

Класс F02K9/60 конструктивные элементы; детали

рама четырехкамерного жидкостного ракетного двигателя -  патент 2527006 (27.08.2014)
жидкостный ракетный двигатель -  патент 2524483 (27.07.2014)
устройство крепления теплозащиты к раме двигателя (варианты) -  патент 2520598 (27.06.2014)
способ изготовления сопла камеры сгорания жидкостного ракетного двигателя -  патент 2519003 (10.06.2014)
соосно-струйная форсунка -  патент 2505698 (27.01.2014)
способ подачи компонентов топлива в камеру трехкомпонентного жидкостного ракетного двигателя и соосно-струйная форсунка для реализации указанного способа -  патент 2502887 (27.12.2013)
способ подачи компонентов топлива в камеру трехкомпонентного жидкостного ракетного двигателя -  патент 2502886 (27.12.2013)
способ подачи компонентов топлива в камеру трехкомпонентного жидкостного ракетного двигателя и соосно-струйная форсунка для реализации указанного способа -  патент 2501967 (20.12.2013)
жидкостный ракетный двигатель -  патент 2497010 (27.10.2013)
жидкостный ракетный двигатель -  патент 2493410 (20.09.2013)
Наверх