способ получения газопоглотителя из порошка титана

Классы МПК:B22F9/20 из твердых металлических соединений
C22B34/12 получение титана
Автор(ы):, , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)
Приоритеты:
подача заявки:
2010-03-29
публикация патента:

Изобретение относится к производству газопоглотителей из порошка титана для электровакуумных и других приборов и может применяться в качестве газопоглотителя различных газов при пониженном давлении в рентгеновских трубках, в ускорителях элементарных частиц. Способ включает формование смеси диоксида титана с восстановителем и последующий нагрев смеси. В качестве восстановителя используют нанопорошок алюминия, полученный электрическим взрывом алюминиевого проводника в среде аргона, взятый в мольном соотношении с диоксидом титана от 0,8:1 до 1,2:1. Нагрев смеси осуществляют при температуре 400-600°С в вакууме 1,9-2,1 Па в течение 3-5 минут. Техническим результатом изобретения является снижение энергозатрат и повышение активности газопоглотителя. 1 ил., 4 табл.

способ получения газопоглотителя из порошка титана, патент № 2424085

Формула изобретения

Способ получения газопоглотителя из порошка титана, включающий формование смеси диоксида титана с восстановителем и последующий нагрев смеси, отличающийся тем, что в качестве восстановителя используют нанопорошок алюминия, полученный электрическим взрывом алюминиевого проводника в среде аргона, взятый в мольном соотношении с диоксидом титана от 0,8:1 до 1,2:1, нагрев смеси осуществляют при температуре 400-600°С в вакууме 1,9-2,1 Па в течение 3-5 мин.

Описание изобретения к патенту

Изобретение относится к производству газопоглотителей для электровакуумных и других приборов и может применяться при работе вакуумированных устройств, а также в качестве газопоглотителя различных газов при пониженном давлении (рентгеновские трубки, ускорители элементарных частиц).

Известен способ получения нераспыляемых газопоглотителей на основе интерметаллических порошков [патент РФ № 2033452, C22C 1/04, опубл. 20.04.1995 г.], в котором при получении газопоглотителей смешивают металлические порошки дисперсностью 1-45 мкм. Затем осуществляют термическое воздействие на смесь в вакууме 13,3-1,33 Па локальным тепловым импульсом с плотностью потока 2-15 Вт/мм2. Слабоэкзотермические смеси предварительно подогревают до 50-900°С. Возможно перед термическим воздействием осуществление прессования смеси с последующей термовакуумной обработкой по ступенчатому режиму: 2 ч при 200°С и 3 ч при 300°С, в вакууме 2-10 Па.

Недостатком данного способа является использование слабоэкзотермических смесей с низкой активностью, поэтому для синтеза газопоглотителей (интерметаллидов) требуется подогрев исходной смеси до 50-900°С.Кроме того, из-за низкой активности исходных смесей для инициирования волны высокотемпературного синтеза необходим мощный тепловой импульс с плотностью потока 2-15 Вт/мм2.

Наиболее близким аналогом-прототипом по совокупности существенных признаков и назначению является [патент РФ № 2369651, C22B 3/11, 10.10.2009] способ получения газопоглотителя из порошков металла, в том числе из порошка титана, включающий формование смеси диоксида титана с восстановителем - кальцием - и последующий нагрев смеси до температуры 800-1400°С.

Недостатком этого способа являются высокие энергозатраты в процессе приготовления газопоглотителя: требуется прогрев смеси при температуре 800-1400°С. Кроме того, недостатком является использование в технологическом процессе щелочно-земельных металлов, что требует дополнительно обработки водой с целью выщелачивания, что снижает активность порошка металла.

Основной технический результат предложенного изобретения - это снижение энергозатрат за счет использования сильноэкзотермических смесей с нанопорошком алюминия, повышение активности газопоглотителя за счет низкой температуры перевода газопоглотителя в активное состояние: температура не превышает 600°С в вакууме не более 4 Па в течение 3-5 минут.

Технический результат достигается тем, что в способе получения газопоглотителя из порошка титана, включающем формование смеси диоксида титана с восстановителем и последующий нагрев смеси, согласно предложенному решению в качестве восстановителя используют нанопорошок алюминия, полученный электрическим взрывом алюминиевого проводника в среде аргона, взятый в мольном соотношении с диоксидом титана от 0,8:1 до 1,2:1, нагрев смеси осуществляют при температуре 400-600°С в вакууме 1,9-2,1 Па в течение 3-5 минут.

Целесообразно использовать нанопорошок алюминия, полученный электрическим взрывом алюминиевого проводника в среде аргона. В этом случае процесс получения нанопорошка алюминия протекает в экстремальных условиях: скорость охлаждения составляет 1010 К/с, а максимальная температура продуктов взрыва составляет 4·104 °С. Сформированные в таких условиях нанопорошки обладают повышенной устойчивостью в воздухе при комнатной температуре, но очень высокой химической активностью при нагревании до 400-600°С. Такой порошок имеет преимущество в сравнении с другими нанопорошками, например, полученными методом испарения - конденсации в аргоне.

Чертеж иллюстрирует, что полученный газопоглотитель имеет пористую структуру: на сколе видны прямые каналы, диаметр которых составляет менее 1 мкм. Такая структура идеальна для работы газопоглотителя.

Осуществление способа рассмотрим на конкретном примере.

Для приготовления газопоглотителя готовили смеси диоксида титана с нанопорошком алюминия (НП Al). Для этого использовали нанопорошок алюминия, полученный электрическим взрывом алюминиевого проводника в среде аргона, и грубодисперсный порошок диоксида титана (марка ч.д.а.). Для эксперимента были выбраны следующие соотношения компонентов: от 0,4:1 до 1,6:1, смешение проводили в агатовой ступке в присутствии изопропилового спирта. После достижения однородности массы перемешивание прекращали и высушивали в сушильном шкафу при температуре 40-45°С в течение 2-3 часов. Смеси прессовали при давлении 30 кГ/см2. Образующийся пористый образец помещали в камеру вакуумного поста ВУП-5 и откачивали до остаточного давления 3-4 Па. Затем включали ленточный нагреватель из молибденовой фольги и при непрерывной откачке повышали температуру до 600°С. В это время происходило взаимодействие нанопорошка алюминия с диоксидом титана с образованием частиц титана, имеющих микропористую структуру. При этом остаточное давление понижалось до 2,0·10-4 - 1,5·10-4 Па благодаря активности газопоглотителя.

Состав исходных смесей и синтезированного газопоглотителя определяли с помощью количественного рентгенофазового анализа. Результаты экспериментов приведены в таблице 1.

Согласно таблице 1 с увеличением содержания НП Al в смеси растет выход металлического титана: при содержании 0,8:1,0 он достигает максимума (54,3%) и выходит на насыщение 59,8-61,8%. При этом остаточное давление резко снижается при переходе от образца 2 к образцу 3, что свидетельствует о резком повышении активности газопоглотителя. Дальнейшее увеличение содержания НП Al нецелесообразно из-за увеличения его расхода, поэтому заявляемый диапазон состава смесей составляет от 0,8:1,0 до 1,2:1,0.

Полученную смесь НП Al и TiO2 подвергали прессованию при небольшом давлении (30 кГ/см 2), помещали в вакуумную камеру и откачивали до остаточного давления 1,3 Па, прогревали до определенной температуры, охлаждали и проводили рентгенофазовый анализ. Результаты экспериментов приведены в таблице 2.

Из данных таблицы 2 следует, что при достижении температуры нагрева 400°С в вакууме 1,3 Па выход металлического титана резко возрастает и достигает 59,8%. Дальнейшее нагревание смеси не приводит к увеличению выхода, поэтому целесообразно ограничить температуру прогрева 600°С.

Для определения величины остаточного давления при активировании газопоглотителя была использована установка, в конструкцию которой входили весы Мак-Бена. Кварцевую спираль предварительно калибровали с использованием аттестованного набора разновесов. Изменение массы образцов определяли с помощью весов Мак-Бена и катетометра. Достаточность вакуумирования определяли по неизменности веса образца при нагревании до 600°С. Образец в виде пористой таблетки помещали в чашку, подвешивали на кварцевой спирали, вакуумировали до соответствующего остаточного давления и затем нагревали до 600°С. Результаты измерений приведены в таблице 3.

Согласно полученным результатам (таблица 3) при переходе величины остаточного давления от 10 до 2,1 Па резко снижается увеличение массы образца, достигая 1,5%. Дальнейшее понижение давления при 600°С приводит к постоянству массы газопоглотителя, что свидетельствует о достаточности величины вакуума. Таким образом, оптимальным является остаточное давление 2,1-1,9 Па при 600°С.

Для определения времени протекания реакции получения активного газопоглотителя готовили смесь НП Al/TiO2. Далее смесь прессовали при давлении 30 кГ/см2, помещали в вакуумную камеру (~1,3 Па) и нагревали до 600°С при непрерывной откачке. При этом изменяли время нагрева каждого образца. Результаты измерений приведены в таблице 4.

Согласно полученным результатам (таблица 4) при температуре 600°С и времени прогрева менее 3 минут выход металлического титана низкий (23,3 мас.%), а при времени прогрева 3 минуты выход металлического титана резко возрастал до 59,8% и затем практически не изменялся. Оптимальным временем прогрева является интервал 3-5 минут.

Таким образом, заявляемый способ позволяет снизить энергозатраты при получении газопоглотителя: в прототипе процесс приготовления осуществляется в течение нескольких часов при минимальной температуре 800°С, а в заявляемом способе процесс осуществляется за 5 минут при 600°С.

Таблица 1
№ , п/нСостав смеси НП Al/TiO2 Выход Ti0, мас.% Остаточное давление после активирования газопоглотителя, ·10 -4 ПаПримечание
1 0,4:1,022,4 4,1 способ получения газопоглотителя из порошка титана, патент № 2424085
20,6:1,0 31,93,9 способ получения газопоглотителя из порошка титана, патент № 2424085
30,8:1,0 54,32,1 Заявляемый способ
41,0:1,0 59,81,8 Заявляемый способ
51,2:1,0 60,61,5 Заявляемый способ
61,4:1,0 61,51,5 способ получения газопоглотителя из порошка титана, патент № 2424085
71,8:1,0 61,81,5 способ получения газопоглотителя из порошка титана, патент № 2424085

Таблица 2
№ , п/нСостав смеси НП Al/TiO2 Выход Ti0, мас.% Tmax нагрева в вакууме, °С Примечание
11:1 12,1100 способ получения газопоглотителя из порошка титана, патент № 2424085
21:1 18,9200 способ получения газопоглотителя из порошка титана, патент № 2424085
31:1 26,4300 способ получения газопоглотителя из порошка титана, патент № 2424085
41:1 59,8400 Заявляемый способ
51:1 62,3500 Заявляемый способ
61:1 62,4600 Заявляемый способ
71:1 62,4700 способ получения газопоглотителя из порошка титана, патент № 2424085

Таблица 3
№ . п/нСостав смеси НП Al/TiO2 Остаточное давление, Па Увеличение массы, способ получения газопоглотителя из порошка титана, патент № 2424085 m, %Примечание
1 1:130 18,2способ получения газопоглотителя из порошка титана, патент № 2424085
21:1 2016,4 способ получения газопоглотителя из порошка титана, патент № 2424085
31:1 1013,1 способ получения газопоглотителя из порошка титана, патент № 2424085
41:1 2,11,5 Заявляемый способ
51:1 1,91,4 Заявляемый способ
61:1 1,91,4 Заявляемый способ

Таблица 4
№ , п/нСостав смеси НП Al/TiO2 Время прогрева, мин Выход Ti0, % Примечание
11:1 121,4 способ получения газопоглотителя из порошка титана, патент № 2424085
21:1 223,3 способ получения газопоглотителя из порошка титана, патент № 2424085
31:1 359,8 Заявляемый способ
41:1 460,2 Заявляемый способ
51:1 560,3 Заявляемый способ
61:1 660,6 способ получения газопоглотителя из порошка титана, патент № 2424085

Класс B22F9/20 из твердых металлических соединений

способ получения суперпарамагнитных частиц никеля и суперпарамагнитная порошковая композиция -  патент 2514258 (27.04.2014)
способ получения нанодисперсных порошков металлов или их сплавов -  патент 2509626 (20.03.2014)
способ получения порошков сплавов на основе титана, циркония и гафния, легированных элементами ni, cu, ta, w, re, os и ir -  патент 2507034 (20.02.2014)
флегматизированные металлические порошки или порошкообразные сплавы, способ их получения и реакционный сосуд -  патент 2492966 (20.09.2013)
способ получения нанопорошка аморфного диоксида кремния -  патент 2488462 (27.07.2013)
способ получения композиционного порошка металл-оксид -  патент 2457073 (27.07.2012)
получение порошков вентильных металлов с улучшенными физическими и электрическими свойствами -  патент 2408450 (10.01.2011)
металлотермическое восстановление оксидов тугоплавких металлов -  патент 2404880 (27.11.2010)
способ получения порошков металлов или гидридов металлов элементов ti, zr, hf, v, nb, ta и cr -  патент 2369651 (10.10.2009)
получение порошков клапанных металлов -  патент 2362653 (27.07.2009)

Класс C22B34/12 получение титана

способ получения металлического титана и устройство для его осуществления -  патент 2528941 (20.09.2014)
обогащенный титаном остаток ильменита, его применение и способ получения титанового пигмента -  патент 2518860 (10.06.2014)
обработка титановых руд -  патент 2518839 (10.06.2014)
способ переработки титановых шлаков -  патент 2518042 (10.06.2014)
способ обработки смеси оксидов ниобия и/или тантала и титана -  патент 2507281 (20.02.2014)
способ вскрытия перовскитового концентрата -  патент 2507278 (20.02.2014)
электролизер для насыщения расплава cacl2 кальцием -  патент 2504591 (20.01.2014)
способ переработки отходов, образующихся при очистке газов рудно-термической печи -  патент 2491360 (27.08.2013)
способ переработки аризонитовых и ильменитовых концентратов -  патент 2490346 (20.08.2013)
способ получения титаноалюминиевого сплава из оксидного титансодержащего материала -  патент 2485194 (20.06.2013)
Наверх