жидкий органический сцинтиллятор

Классы МПК:G01T1/204 жидкостных 
Автор(ы):,
Патентообладатель(и):Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU)
Приоритеты:
подача заявки:
2010-05-14
публикация патента:

Изобретение относится к области ядерной физики и может быть использовано в атомной технике и промышленности, биофизике и медицине, физике космических лучей, в частности для создания высокоэффективных детекторов больших объемов и для решения задач по обеспечению безопасности работы ЛР и ЯЭУ. Технический результат - снижение пожароопасности, уменьшение токсичности и повышение прозрачности сцинтиллятора, снижение расходов на создание. Жидкий органический сцинтиллятор, состоящий из активатора РРО, оместителя спектра РОРОР и основы сцинтиллятора, при этом в качестве основы он содержит смесь синтетических углеводородов ароматического ряда - линейный алкилбензол с температурой вспышки насыщенных паров 150°С, прошедшую адсорбционную очистку, при этом он содержит компоненты в следующем составе: линейный алкилбензол 1 л, РРО от 2,5 до 3,5 г/л, РОРОР от 0,0105 до 0,020 г/л. 1 з.п. ф-лы, 2 ил. жидкий органический сцинтиллятор, патент № 2424536

жидкий органический сцинтиллятор, патент № 2424536 жидкий органический сцинтиллятор, патент № 2424536

Формула изобретения

1. Жидкий органический сцинтиллятор, состоящий из активатора РРО, смесителя спектра РОРОР и основы сцинтиллятора, отличающийся тем, что в качестве основы он содержит смесь синтетических углеводородов ароматического ряда - линейный алкилбензол с температурой вспышки насыщенных паров выше 150°С, прошедшую адсорбционную очистку.

2. Сцинтиллятор по п.1, отличающийся тем, что он содержит компоненты в следующем составе: линейный алкилбензол 1 л, РРО от 2,5 до 3,5 г/л, РОРОР от 0,015 до 0,020 г/л.

Описание изобретения к патенту

Изобретение относится к области ядерной физики и может быть использовано в атомной технике и промышленности, биофизике и медицине, физике космических лучей, в частности для создания высокоэффективных детекторов больших объемов и для решения задач по обеспечению безопасности работы ЯР и ЯЭУ.

Известен жидкий сцинтиллятор для регистрации нейтронов, содержащий активатор РРО, сместитель спектра РОРОР, соединение лития и основу сцинтиллятора, в качестве основы он содержит нефтяную фракцию углеводородов с температурой кипения 250-320°С и температурой вспышки насыщенных паров 120°С, прошедшую гидроочистку и гидрогенизацию, а в качестве соединения лития LiOCH3 (метилат лития). При этом он содержит компоненты в следующем составе, г/л:

Нефтяная фракция углеводородов 1

РРО - 1-4,

РОРОР - 0,01,

LiOCH3 - 60-150

(патент РФ № 2078355, оп. 27.04.97. G01T 1/204).

Этот сцинтиллятор узкого профиля, он предназначен только для регистрации нейтронов.

Также известен жидкий сцинтиллятор (патент РФ № 2094824, оп. 27.10.97), который в качестве основы содержит жидкие парафины с температурой кипения 232-334°С, в качестве ароматического углеводорода - нафталин, или - метилнафталин или ксилол или смесь нафталина с ксилолом, в качестве активатора 2-фенил-5-4-бифенил-оксазол (ВРО) или 1,3,5-трифенил-2-пиразолин (ТФП), или 2,5-дифенилоксазол (РРО) при следующем соотношении компонентов, мас.:

Жидкие парафины 79,5-94,5,

Ароматический углеводород 5-20,

Активатор 0,4-0,6.

Известен жидкий органический сцинтиллятор на основе - РХЕ («Study of phenylxylylethane (PXE) as scintillator for low energy neutrino experiments». Nuclear Instruments and Methods in Physics Research A 585 (2008) 48-60).

Состав сцинтиллятора:

активатор - паратерфенил - р-Тр - 2 г/л,

сместитель спектра - bis-MSB - 20 мг/л;

основа сцинтиллятора - органическая жидкость - PXE.

PXE - органическая жидкость, дорогая, требующая очистки методом адсорбции, прозрачность после очистки составляет порядка 10 м.

Известные жидкие сцинтилляторы, используемые для регистрации нейтринного излучения, обладают рядом недостатков. Они имеют малую прозрачность, низкую температуру вспышки насыщенных паров, токсичны. Все это увеличивает капитальные и эксплуатационные расходы при создании детекторов нейтронов больших размеров. Определенным недостатком упомянутых сцинтилляторов является высокая стоимость используемых для их создания материалов.

Наиболее близкими по характеристикам к заявляемому сцинтиллятору является сцинтиллятор, принятый в качестве прототипа, содержащий активатор РРО, сместитель спектра РОРОР и основу сцинтиллятора - пседокумин (PC) (The Borexino detector at the Laboratori Nazionali del Gran Sasso, Nuclear Instruments and Methods in Physics Research A Volume 600, Issue 3, 11 March, 2009, Pages 568-593). Его недостатками также являются высокая токсичность, низкая прозрачность, высокая стоимость. Прозрачность сцинтиллятора на основе PC составляет 7-8 м, а световыход порядка 10000 фотонов/МэВ.

Задачей изобретения является снижение пожароопасности, уменьшение токсичности и повышение прозрачности сцинтиллятора, снижение расходов на создание.

Для этого предложен жидкий органический сцинтиллятор, состоящий из активатора РРО, сместителя спектра РОРОР и основы сцинтиллятора, при этом в качестве основы он содержит смесь синтетических углеводородов ароматического ряда - линейный алкилбензол с температурой вспышки насыщенных паров 150°С, прошедшую адсорбционную очистку.

При этом он содержит компоненты в следующем составе: линейный алкилбензол 1 л, РРО от 2,5 до 3,5 г/л, РОРОР от 0,015 до 0,020 г/л.

В данном изобретении в качестве основы сцинтиллятора используется линейный алкилбензол (ЛАБ) с температурой вспышки насыщенных паров выше +150°С. Линейный алкилбензол является продуктом, получаемым из побочных продуктов переработки нефти и используется в качестве основы для создания ПАВ и жидких моющих средств. Линейный алкилбензол - недорогая и нетоксичная органическая жидкость.

Для применения в качестве основы сцинтиллятора линейный алкилбензол подвергается адсорбционной очистке от примесей через колонку с оксидом алюминия.

Такой состав сцинтиллятора удобно использовать как с ФЭУ (фотоэлектронный умножитель), имеющими одинаковую эффективность регистрации света в широком диапазоне длин волн, так и

для ФЭУ с неравномерным распределением эффективности регистрации света по длинам волн. Наличие РОРОР - сместителя спектра высвечивания в составе сцинтиллятора смещает спектр высвечивания в область длин волн от 410 до 430 нм, в этой области большинство ФЭУ имеют максимум эффективности регистрации света.

Пример приготовления сцинтиллятора.

Промышленный линейный алкилбензол очищается от примесей методом адсорбции. В 1 л линейного алкилбензола растворяется 3 г РРО и 0,015 г РОРОР. Для ускорения процесса растворения возможно повышение температуры. Необходимо отметить, что методика очистки и приготовления сцинтиллятора относительно просты и общеизвестны. Сцинтиллятор обладает следующими характеристиками.

Прозрачность на длине 420 нм > 10 м, световыход составляет 115% от сцинтиллятора на основе PC (прототип), исходные материалы доступны и имеют низкую стоимость, сцинтиллятор обладает высокой температурой вспышки и не токсичен.

В качестве эталона для измерения световыхода был взят именно PC, поскольку для него с высокой точностью известен абсолютный показатель световыхода.

Использование предлагаемого жидкого органического сцинтиллятора позволяет решать целый ряд фундаментальных и прикладных задач, снизить затраты на изготовление, снизить пожароопасность при работе с большими объемами.

На фигуре 1 показана зависимость световыхода от концентрации РРО в ЛАБе. Видно, что максимальный световыход достигается уже при концентрации РРО 2,5 г/л, и остается на уровне 110% от эталонного образца до концентрации 3,5 г/л. Поэтому оптимальная концентрация РРО в растворе - 3 г/л.

На фигуре 2 показана зависимость световыхода от концентрации РОРОР в растворе при концентрации РРО - 3 г/л. Максимальный световыход (115% от эталонного образца) достигается при концентрации 0,015 г/л и не меняется при увеличении концентрации в лучшую сторону. Поэтому рекомендуется для изготовления 1 л сцинтиллятора добавлять 0,015-0,020 г/л РОРОР.

Использование предлагаемого жидкого органического сцинтиллятора позволяет решать целый ряд фундаментальных и прикладных задач, снизить затраты на изготовление, снизить пожароопасность при работе с большими объемами. Этот сцинтиллятор обладает рядом достоинств, позволяющих применять его там, где кристаллические сцинтилляторы оказываются непригодными. Он имеет короткое время высвечивания, высокую прозрачность к собственному излучению, им можно придавать любую форму в зависимости от формы детектора, вводить в них источник излучения.

Класс G01T1/204 жидкостных 

жидкий органический сцинтиллятор -  патент 2424537 (20.07.2011)
двумерный детектор ионизирующих частиц -  патент 2332688 (27.08.2008)
состав коктейля для измерений методом сцинтилляций в жидкости -  патент 2290668 (27.12.2006)
жидкий сцинтиллятор -  патент 2267512 (10.01.2006)
способ жидкосцинтилляционного альфа-спектрометрического измерения активности радионуклидов -  патент 2209447 (27.07.2003)
способ идентификации альфа-излучающих радионуклидов в пробах с использованием жидкостного сцинтилляционного счетчика -  патент 2191409 (20.10.2002)
радиометрическое устройство для измерения низкоэнергетических бета-излучателей, например трития -  патент 2181900 (27.04.2002)
радиометрическое устройство для измерения низкоэнергетических ионизирующих излучений -  патент 2161320 (27.12.2000)
блок сцинтилляционного детектора -  патент 2160910 (20.12.2000)
способ сцинтилляционного альфа-спектрометрического измерения активности радионуклидов -  патент 2154843 (20.08.2000)
Наверх