способ получения титан-магниевого нанокатализатора (со)полимеризации альфа-олефинов и сопряженных диенов

Классы МПК:C08F4/64 титан, цирконий, гафний или их соединения
C08F4/642 компонент, отнесенный к рубрике  4/64, с алюминийорганическим соединением
C08F210/02 этен
C08F36/04 сопряженные
Автор(ы):, , , , , , , ,
Патентообладатель(и):Учреждение Российской академии наук Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева РАН (ИНХС РАН) (RU)
Приоритеты:
подача заявки:
2010-01-28
публикация патента:

Изобретение относится к производству полимеров, а именно: к металлокомплексным катализаторам полимеризации, и может быть использовано для получения (со)полимеров альфа-олефинов и сопряженных диенов. Описан способ получения титан-магниевого нанокатализатора путем взаимодействия магния с тетрахлоридом титана в присутствии н-бутилхлорида. Содержание бутилхлорида составляет 6,0-8,7 мл на 1 г магния. Объемное соотношение тетрахлорида титана: н-бутилхлорида составляет 1:(47-67). Технический результат - повышение активности катализатора. 1 з.п. ф-лы, 1 табл.

Формула изобретения

1. Способ получения титан-магниевого нанокатализатора (со)полимеризации альфа-олефинов и сопряженных диенов взаимодействием магния с тетрахлоридом титана в присутствии н-бутилхлорида, отличающийся тем, что взаимодействие осуществляют при содержании бутилхлорида 6,0-8,7 мл на 1 г магния.

2. Способ получения титан-магниевого нанокатализатора (со)полимеризации альфа-олефинов и сопряженных диенов по п.1, отличающийся тем, что взаимодействие осуществляют при объемном соотношении тетрахлорид титана: н-бутилхлорид 1:(47-67).

Описание изобретения к патенту

Изобретение относится к производству полимеров, а именно: к металлокомплексным катализаторам полимеризации, и может быть использовано для получения полимеров и сополимеров альфа-олефинов и сопряженных диенов.

Известен способ получения титан-магниевого катализатора (со)полимеризации альфа-олефинов, включающий взаимодействие дихлорида магния, спирта и основания Льюиса, нагревание полученной смеси до плавления, быстрое охлаждение, многократную промывку, последующее взаимодействие полученного твердого аддукта с соединением титана и электронодонором и многократную промывку полученного твердого продукта (ЕР 1572756).

Известен также способ получения титан-магниевого катализатора полимеризации этилена в сверхвысокомолекулярный полиэтилен взаимодействием в среде хлорбензола порошкообразного магния с дибутиловым эфиром и раствором йода в н-бутилхлориде с последующим взаимодействием полученного раствора магнийорганического соединения с соединением кремния, в качестве которого используют продукт взаимодействия соединения формулы R'kSiCl4-k, где k=0-l, с тетраэтоксидом кремния, добавлением тетрахлорида титана к полученной суспензии магнийсодержащего носителя, нагреванием смеси, выдерживанием ее и многократным промыванием полученного осадка гептаном (ЕР 2081969).

Известен способ получения титан-магниевого катализатора (со)полимеризации сопряженных диенов по следующей методике: в реактор загружают магниевые стружки, растворитель, н-бутилхлорид (1/5 часть от всего количества) и кристаллический йод, температуру поднимают до 65-70°С и постепенно добавляют остаток бутилхлорида, реакцию ведут 4 часа, после охлаждения суспензии растворитель декантируют и осадок промывают растворителем от непрореагировавшего н-бутилхлорида, затем заливают растворителем и при 60-70°С добавляют тетрахлорид титана, через 5-6 часов реактор охлаждают, растворитель декантируют, образующийся титан-магниевый катализатор отмывают от избытка тетрахлорида титана (RU 2196782).

Все перечисленные известные способы получения титан-магниевого катализатора являются многостадийными, требующими неоднократных отмывок от избытка используемых реагентов и, в связи с этим, достаточно большого времени приготовления.

Наиболее близким к предлагаемому изобретению является известный способ получения титан-магниевого катализатора (со)полимеризации альфа-олефинов и сопряженных диенов взаимодействием магния с тетрахлоридом титана в присутствии н-бутилхлорида (RU 2290413). Взаимодействие магния с тетрахлоридом титана проводят при содержании н-бутилхлорида 14,5-15,0 мл на 1 г магния. Объемное соотношение тетрахлорид титана:н-бутилхлорид составляет 1:(53-80).

Указанный способ получения катализатора осуществляется по существенно упрощенной технологии, в одну стадию. По результатам дополнительно проведенных исследований методом электронной просвечивающей микроскопии установлено, что получаемый катализатор представляет собой тонкодисперсные наночастицы, склонные к образованию фрактальных структур, характерных для наноразмерных объектов, что позволяет его отнести к нанокатализаторам.

Недостатком нанокатализатора, полученного известным способом, является его сравнительно невысокая активность.

Техническая задача изобретения состоит в создании нового способа получения титан-магниевого нанокатализатора, лишенного указанного недостатка.

Технический результат предлагаемого изобретения заключается в повышении активности нанокатализатора в процессах (со)полимеризации альфа-олефинов и сопряженных диенов.

Указанный технический результат достигается тем, что способ получения титан-магниевого нанокатализатора (со)полимеризации альфа-олефинов и сопряженных диенов взаимодействием магния с тетрахлоридом титана в присутствии н-бутилхлорида осуществляют при содержании н-бутилхлорида 6,00-8,70 мл на 1 г магния.

Предпочтительно, взаимодействие осуществляют при объемном соотношении тетрахлорид титана:н-бутилхлорид 1:(47-67).

Нижеследующие примеры 1-6 иллюстрируют предлагаемый способ получения нанокатализатора (со)полимеризации альфа-олефинов и сопряженных диенов.

Примеры 1-6

В реактор с мешалкой в атмосфере инертного газа (аргона, азота) загружают одновременно магниевые стружки, н-бутилхлорид и тетрахлорид титана. Реакцию проводят при 78-80°С в течение 2-4 часов. Выход нанокатализатора составляет 98±2% по сравнению с расчетным.

В таблице представлены условия получения нанокатализатора и содержание в нем титана в % мас. на нанокатализатор. Для сравнения приведены условия получения нанокатализатора по примерам 1-4 RU 2290413 и содержание в нем титана (контрольные примеры 1к-4к).

Методом электронной просвечивающей микроскопии установлено, что полученный нанокатализатор представляет собой наночастицы (15-35 нм), склонные к образованию фрактальных структур.

Полученный нанокатализатор можно хранить, например, в суспензии гексана или гептана в атмосфере аргона с концентрацией титана, составляющей 0,05-0,10 моль/л.

Полученный нанокатализатор может использоваться в составе различных каталитических систем в процессах полимеризации и (со)полимеризации альфа-олефинов и сопряженных диенов, в том числе, при необходимости, предварительно нанесенным на инертный носитель и/или, например, в случае полимеритзации пропилена, модифицированным электронодонорами.

Для определения активности полученного титан-магниевого нанокатализатора были проведены эксперименты по (со)полимеризации различных альфа-олефинов и различных сопряженных диенов. Во всех экспериментах, вне зависимости от природы (со)мономеров, нанокатализатор, полученный способом по предлагаемому изобретению, показал активность, в 2,5 и более раз превышающую активность нанокатализатора по RU 2290413. Наблюдаемая высокая эффективность полученных по изобретению нанокатализаторов объясняется особенностью их структуры, образующейся в условиях пониженного содержания н-бутилхлорида по отношению к магнию в реакционной среде. Дополнительным подтверждением получения новой структуры нанокатализатора являются результаты исследования образцов полимеров, полученных в экспериментах по примеру 7.

Нижеследующие примеры 7-11 иллюстрируют использование нанокатализатора, полученного способом по предлагаемому изобретению, но не ограничивают его.

Пример 7

Полимеризацию этилена проводят в литровом автоклаве. В качестве катализатора используют титан-магниевые нанокатализаторы, полученные по примерам 1-6, в сочетании с триэтилалюминием (ТЭА). Полимеризацию проводят в суспензии растворителя (гексан - 0,5 л), при давлении этилена 2 атм и температуре 75±5°С, на предварительно сформированной каталитической системе нанокатализатор + ТЭА в течение 2 часов.

Выход сверхвысокомолекулярного полиэтилена (ММ=/1,0-1,9/·10 6), полученного с использованием нанокатализаторов по примерам 1-6, составляет 200-340 г, активность нанокатализаторов, соответственно, 100-170 кг полиэтилена /г Ti·ч·атм.

Установлено, что скорость полимеризации этилена, полученного с использованием нанокатализаторов по примерам 1-6, практически стационарна в течение проведения процесса, что свидетельствует о стабильности катализатора и отсутствии диффузионных ограничений несмотря на высокий уровень его дисперсности.

В сравнительных экспериментах процесс проводили в вышеописанных условиях, но с использованием нанокатализаторов по RU 2290413 (по примерам 1к-4к).

Выход сверхвысокомолекулярного полиэтилена (ММ=/1,0-1,9/·106), полученного с использованием нанокатализаторов по примерам 1к-4к, составляет 80-100 г, активность нанокатализаторов, соответственно, 40-50 кг полиэтилена/г Ti·ч·атм.

Результаты исследования методами рентгеноструктурного анализа и дифференциальной сканирующей калориметрии образцов сверхвысокомолекулярного полиэтилена, полученного в экспериментах по примеру 7, показали следующее.

Для образцов полимеров, полученных в экспериментах по изобретению, средняя температура плавления составляет 144°С, средняя величина степени кристалличности составляет 74%, для образцов полимеров, полученных в сравнительных экспериментах, - соответственно, 138,5°С и 62%.

Рентгенограммы насцентных образцов, зарегистрированные при 20°С (CuK способ получения титан-магниевого нанокатализатора (со)полимеризации   альфа-олефинов и сопряженных диенов, патент № 2425059 , способ получения титан-магниевого нанокатализатора (со)полимеризации   альфа-олефинов и сопряженных диенов, патент № 2425059 =0.154 нм, изогнутый кристалл-монохроматор кварца на первичном пучке), показывают, что содержание моноклинной кристаллической фазы практически одинаково во всех исследованных образцах, полученных в экспериментах по изобретению, и составляет около 50% от общей кристаллической фазы сверхвысокомолекулярного полиэтилена.

В образцах, полученных в сравнительных экспериментах, содержание моноклинной кристаллической фазы составляет 10-25% от общей кристаллической фазы сверхвысокомолекулярного полиэтилена.

Различие в свойствах образцов сверхвысокомолекулярного полиэтилена, полученного в экспериментах по изобретению и сравнительных экспериментах, дополнительно подтверждает, что способ по изобретению приводит к получению нанокатализатора, имеющего структуру, отличную от структуры нанокатализатора, полученного способом по RU 2290413.

Сверхвысокомолекулярный полиэтилен, полученный с использованием нанокатализатора, приготовленного способом по предлагаемому изобретению, как содержащий большее количество моноклинной фазы, является более технологичным в процессах переработки в сверхвысокомодульные, сверхвысокопрочные волокна.

Пример 8

В условиях примера 5 по RU 2290413 была проведена сополимеризация этилена с альфа-олефинами, но в присутствии нанокатализаторов, полученных в примерах 1-6 по предлагаемому изобретению, также нанесенных на инертный носитель. Выход сополимера составил 350-420 кг/г Ti, что соответствует активности нанокатализатора - 7,8-9,3 кг сополимера/г Ti·ч·атм.

В примере 5 по RU 2290413 выход сополимера составил 140 кг/г Ti, что соответствует активности нанокатализатора - 3,1 кг сополимера/г Ti·ч·атм.

Пример 9

В условиях примера 6 по RU 2290413 была проведена полимеризация бутадиена, но в присутствии нанокатализатора, полученного в примере 2 по предлагаемому изобретению. Активность нанокатализатора составила 52 кг полибутадиена/г Ti.

В примере 6 по RU 2290413 активность нанокатализатора составила 21 кг полибутадиена/г Ti.

Пример 10

В условиях примера 7 по RU 2290413 была проведена полимеризация изопрена, но в присутствии нанокатализатора, полученного в примере 5 по предлагаемому изобретению. Активность нанокатализатора составила 35 кг полиизопрена/г Ti.

В примере 7 по RU 2290413 активность нанокатализатора составила 13 кг полиизопрена/г Ti.

Пример 11

Сополимеризация бутадиена и изопрена была проведена в условиях примера 8 по RU 2290413, но в присутствии нанокатализатора, полученного в примере 1 по предлагаемому изобретению. Выход сополимера 85% от загруженных сомономеров был получен через 40 мин от начала сополимеризации.

В примере 8 по RU 2290413 выход сополимера 85% был получен при времени сополимеризации 2 часа.

Таблица
№ примераMg, гн-BuCl, мл TiCL4, мл BuCl, мл/г Mg TiCl4/н - BuCl, объемное [Ti], % мас.
112 751,6 6,251:47 1,50
2 10 600,9 6,001:66 1,10
3 10 601,1 6,001:55 1,20
4 24 1753,2 6,001:55 1,50
5 20 1752,6 8,701:67 1,31
6 300 220040 7,301:55 1,46
Патент RUспособ получения титан-магниевого нанокатализатора (со)полимеризации   альфа-олефинов и сопряженных диенов, патент № 2425059 способ получения титан-магниевого нанокатализатора (со)полимеризации   альфа-олефинов и сопряженных диенов, патент № 2425059 способ получения титан-магниевого нанокатализатора (со)полимеризации   альфа-олефинов и сопряженных диенов, патент № 2425059 способ получения титан-магниевого нанокатализатора (со)полимеризации   альфа-олефинов и сопряженных диенов, патент № 2425059 способ получения титан-магниевого нанокатализатора (со)полимеризации   альфа-олефинов и сопряженных диенов, патент № 2425059 способ получения титан-магниевого нанокатализатора (со)полимеризации   альфа-олефинов и сопряженных диенов, патент № 2425059
22904133,6 54 0,915,0 1:602,36
12,0180 3,415,0 1:532,40
24,0350 4,414,5 1:801,36
12,0175 2,214,5 1:801,36
способ получения титан-магниевого нанокатализатора (со)полимеризации   альфа-олефинов и сопряженных диенов, патент № 2425059 способ получения титан-магниевого нанокатализатора (со)полимеризации   альфа-олефинов и сопряженных диенов, патент № 2425059 способ получения титан-магниевого нанокатализатора (со)полимеризации   альфа-олефинов и сопряженных диенов, патент № 2425059 способ получения титан-магниевого нанокатализатора (со)полимеризации   альфа-олефинов и сопряженных диенов, патент № 2425059 способ получения титан-магниевого нанокатализатора (со)полимеризации   альфа-олефинов и сопряженных диенов, патент № 2425059 способ получения титан-магниевого нанокатализатора (со)полимеризации   альфа-олефинов и сопряженных диенов, патент № 2425059

Класс C08F4/64 титан, цирконий, гафний или их соединения

способ полимеризации полимеров на основе олефинов -  патент 2495055 (10.10.2013)
полимерные пленки -  патент 2489454 (10.08.2013)
способ получения модифицированного титан-магниевого нанокатализатора -  патент 2486956 (10.07.2013)
композиция катализатора со смешанным агентом, регулирующим селективность, и способ полимеризации, использующий ее -  патент 2486208 (27.06.2013)
регулирование уровня разветвления и вязкости поли-альфа-олефинов посредством введения пропена -  патент 2480482 (27.04.2013)
способ приготовления титанового катализатора для стереоспецифической полимеризации изопрена -  патент 2479351 (20.04.2013)
каталитическая композиция, способ полимеризации олефинов с регулируемой морфологией и полимерная композиция -  патент 2470945 (27.12.2012)
способ полимеризации полиолефинов в растворе -  патент 2450026 (10.05.2012)
твердый титановый компонент катализатора, катализатор полимеризации олефинов и способ полимеризации олефинов -  патент 2443715 (27.02.2012)
каталитическая система для получения полипропиленовых сополимеров -  патент 2436800 (20.12.2011)

Класс C08F4/642 компонент, отнесенный к рубрике  4/64, с алюминийорганическим соединением

металлоценовое соединение, включающая его композиция катализатора и использующий его способ полимеризации олефина -  патент 2510646 (10.04.2014)
способ получения противотурбулентной присадки с рециклом мономеров, способ получения противотурбулентной присадки, способ получения высших поли- -олефинов для этих способов и противотурбулентная присадка на их основе -  патент 2505551 (27.01.2014)
способ получения линейных альфа-олефинов -  патент 2497798 (10.11.2013)
способ получения модифицированного титан-магниевого нанокатализатора -  патент 2486956 (10.07.2013)
способ получения противотурбулентной присадки суспензионного типа, снижающей гидродинамическое сопротивление углеводородных жидкостей -  патент 2481357 (10.05.2013)
способ приготовления титанового катализатора для стереоспецифической полимеризации изопрена -  патент 2479351 (20.04.2013)
способ получения сополимеров мономеров олефинового ряда с циклическими или линейными диенами -  патент 2477289 (10.03.2013)
катализатор полимеризации олефина и способ полимеризации олефина с его использованием -  патент 2469046 (10.12.2012)
катализатор полимеризации и сополимеризации этилена, способ его приготовления и способ получения полиэтиленов с использованием этого катализатора -  патент 2462479 (27.09.2012)
каталитическая система и способ получения реакторного порошка сверхвысокомолекулярного полиэтилена для сверхвысокопрочных сверхвысокомодульных изделий методом холодного формования -  патент 2459835 (27.08.2012)

Класс C08F210/02 этен

полиэтиленовая пленка с высокой прочностью на растяжение и высокой энергией разрыва при растяжении -  патент 2524948 (10.08.2014)
пленки, полученные из гетерогенного сополимера этилен/альфа-олефин -  патент 2519776 (20.06.2014)
способ получения стабилизированных защитными коллоидами полимеров -  патент 2471810 (10.01.2013)
композиции на основе полиэтилена высокой плотности, способ их получения, литьевые формованные изделия из них и способ получения данных изделий -  патент 2464287 (20.10.2012)
способ высокотемпературной полимеризации полиэтилена в растворе -  патент 2463311 (10.10.2012)
мономодальный сополимер этилена для формования под давлением и способ его производства -  патент 2461579 (20.09.2012)
системы и способы производства полиолефинов -  патент 2461577 (20.09.2012)
способ непрерывной полимеризации -  патент 2459833 (27.08.2012)
композиции полиэтилена, способы их получения и изготовляемые из них изделия -  патент 2457224 (27.07.2012)
композиции полиэтилена высокой плотности, способ их получения, изготовленные из них изделия и способ изготовления таких изделий -  патент 2444545 (10.03.2012)

Класс C08F36/04 сопряженные

полимеры, функционализированные имидными соединениями, содержащими защищенную аминогруппу -  патент 2516519 (20.05.2014)
способ получения полидиенов полимеризацией в объеме -  патент 2515980 (20.05.2014)
способ полимеризации в массе -  патент 2505553 (27.01.2014)
катализаторы для получения цис-1,4-полидиенов -  патент 2505552 (27.01.2014)
способ получения полидиенов -  патент 2499803 (27.11.2013)
способ получения разветвленных функционализированных диеновых (со)полимеров -  патент 2497837 (10.11.2013)
функционализированные полимеры -  патент 2491297 (27.08.2013)
способ получения функционализированных полимеров и функционализированный полимер -  патент 2486209 (27.06.2013)
способ получения полимера с использованием каталитической композиции и каталитическая композиция на основе никеля -  патент 2476451 (27.02.2013)
наноструктурированные полимеры на основе сопряженных диенов -  патент 2475503 (20.02.2013)
Наверх