способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе
Классы МПК: | C22C19/03 никеля C22C1/02 плавлением |
Автор(ы): | Сидоров Виктор Васильевич (RU), Ригин Вадим Евгеньевич (RU), Подкопаева Лидия Александровна (RU), Горюнов Александр Валерьевич (RU) |
Патентообладатель(и): | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) (RU) |
Приоритеты: |
подача заявки:
2010-08-18 публикация патента:
20.08.2011 |
Изобретение относится к способу производства безуглеродистых литейных жаропрочных сплавов на никелевой основе. Способ включает расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование в две стадии. На первой стадии осуществляют введение окислителя в атмосфере инертного газа при давлении 20-150 мм рт.ст. с последующим удалением инертного газа. После удаления инертного газа при давлении газа (1-10)×10-2 мм рт.ст. в расплав дополнительно вводят углерод в количестве 0,001-0,010% от массы шихтовых материалов. На второй стадии осуществляют введение редкоземельных металлов, количество которых в 2,0-20,0 раз превышает количество углерода, оставшегося в расплаве после первой стадии рафинирования. После второй стадии рафинирования в расплав вводят хром и активные легирующие элементы. Техническим результатом является повышение чистоты безуглеродистых литейных жаропрочных сплавов, повышение их эксплуатационных свойств и увеличение выхода годного при литье изделий с монокристаллической структурой. 2 табл.
Формула изобретения
Способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе, включающий расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование в две стадии, причем на первой стадии осуществляют введение окислителя в атмосфере инертного газа при давлении 20-150 мм рт.ст., на второй стадии - введение редкоземельных металлов, количество которых в 2,0-20,0 раз превышает количество углерода, оставшегося в расплаве после первой стадии рафинирования, а после второй стадии рафинирования в расплав вводят хром и активные легирующие элементы, отличающийся тем, что после первой стадии рафинирования инертный газ удаляют и при давлении газа (1-10)·10-2 мм рт.ст. в расплав дополнительно вводят углерод в количестве 0,001-0,010% от массы шихтовых материалов.
Описание изобретения к патенту
Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на никелевой основе, и может быть использовано при выплавке безуглеродистых жаропрочных сплавов для литья лопаток газотурбинных двигателей и других деталей с монокристаллической структурой.
В литейных жаропрочных безуглеродистых сплавах азот и кислород являются вредными примесями, поскольку они образуют тугоплавкие оксиды и нитриды, которые могут являться центрами гетерогенного зарождения равноосных зерен в монокристаллических отливках. Наличие равноосных зерен снижает эксплуатационные характеристики монокристаллов и может служить причиной преждевременного разрушения монокристаллических отливок. Поэтому содержание кислорода и азота в безуглеродистых жаропрочных сплавах не должно превышать 0,0005% каждого.
Известен способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе, включающий расплавление под вакуумом шихтовых материалов, обезуглероживающее рафинирование расплава, раскисление расплава и последующее введение в него активных легирующих элементов (А.с. № 1584404).
Недостатком известного способа является низкая жаропрочность полученного сплава при температуре 1100°C и высокие содержания азота и кислорода в готовом металле.
Известен способ выплавки безуглеродистых литейных жаропрочных сплавов на никелевой основе, включающий расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование расплава в две стадии введением окислителя в атмосфере инертного газа под давлением 20-150 мм рт.ст., введением магния в количестве 0,02-0,20% от массы расплава, церия и иттрия в суммарном количестве 0,01-0,10% от массы расплава, а после введения активных легирующих элементов в вакууме введение магния в количестве 0,003-0,015% от массы расплава и совместно лантана и скандия в суммарном количестве 0,01-0,50% от массы расплава (Патент РФ № 2353688).
Недостатком известного способа является его взрыво- и пожароопасность, низкий выход годного при литье изделий с монокристаллической структурой из безуглеродистых литейных жаропрочных сплавов.
Наиболее близким аналогом, взятым за прототип, является способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе, включающий расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование в две стадии: на первой стадии проводят введение окислителя в атмосфере инертного газа при давлении 20-150 мм рт.ст. и удаление газа, после чего осуществляют вторую стадию рафинирования введением редкоземельных металлов в количестве в 2,0-20,0 раз превышающем количество углерода, оставшегося в расплаве после первой стадии рафинирования и после второй стадии рафинирования перед введением активных легирующих элементов в расплав вводят хром (Патент РФ № 2074569).
Недостатком этого способа является недостаточная чистота безуглеродистых жаропрочных сплавов по азоту, кислороду, пониженные эксплуатационные свойства и низкий выход годного по макроструктуре при отливке готовых изделий с монокристаллической структурой.
Технической задачей предлагаемого способа является повышение чистоты безуглеродистых жаропрочных сплавов по азоту, кислороду, увеличение выхода годного при литье изделий с монокристаллической структурой и повышение эксплуатационных свойств жаропрочных сплавов на никелевой основе.
Технический результат достигается тем, что предложен способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе, включающий расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование в две стадии: на первой стадии осуществляют введение окислителя в атмосфере инертного газа при давлении 20-150 мм рт.ст., на второй стадии - введение редкоземельных металлов в количестве в 2,0-20,0 раз превышающем количество углерода, оставшегося в расплаве после первой стадии рафинирования, а после второй стадии рафинирования в расплав вводят хром и активные легирующие элементы, в котором после первой стадии рафинирования инертный газ удаляют и при давлении газа (1-10)×10-2 мм рт.ст. в расплав дополнительно вводят углерод в количестве 0,001-0,010% от массы шихтовых материалов.
Установлено, что при удалении инертного газа после первой стадии рафинирования и дополнительном введении углерода при давлении газа (1-10)×10-2 мм рт.ст. в количестве 0,001-0,010% от массы шихтовых материалов при выполнении других заявленных операциях способа достигается высокая чистота сплава по азоту и кислороду, увеличивается выход годного при литье изделий с монокристаллической структурой и повышаются эксплуатационные свойства безуглеродистых литейных жаропрочных сплавов на никелевой основе.
При этом, несмотря на дополнительное введение углерода, содержание его в безуглеродистом литейном жаропрочном сплаве на никелевой основе остается в необходимых пределах.
Примеры осуществления способа
По предлагаемому способу осуществили выплавку безуглеродистых литейных жаропрочных сплавов на никелевой основе системы Ni-Co-Cr-Al-W-Mo-Re (сплав 1) и Ni-Co-Cr-Al-W-Mo-Re-Ru-Ta (сплав 2) в вакуумной индукционной печи с емкостью тигля 20 кг.
Пример 1 (сплав 1). В тигель загружали шихтовые материалы: никель, кобальт, молибден, вольфрам, рений. Расплавление шихты осуществляли в вакууме. После расплавления шихты в плавильную камеру напускали инертный газ (аргон) до давления 80 мм рт.ст. и вводили в расплав окислитель (закись никеля). После этого газ удаляли и при давлении 1×10 -2 мм рт.ст. вводили в расплав углерод из расчета 0,001% от массы шихтовых материалов. Затем в расплав вводили РЗМ в количестве 0,02%, что превышает остаточное количество углерода в расплаве не менее чем в два раза, после чего добавляли хром и алюминий.
Примеры 2 и 3 проводили аналогично примеру 1, при этом менялось количество вводимого углерода и давление (см. таблицу 1).
Пример 4 проводили по способу-прототипу.
Пример 5 (сплав 2). В тигель загружали шихтовые материалы: никель, кобальт, молибден, вольфрам, рений, рутений. Расплавление шихты осуществляли в вакууме. После расплавления шихты в плавильную камеру напускали инертный газ (аргон) до давления 120 мм рт.ст. и вводили в расплав окислитель (закись никеля). После этого газ удалили и при давлении 1×10-2 мм рт.ст. ввели в расплав углерод из расчета 0,001% от массы шихтовых материалов. Затем в расплав ввели РЗМ в количестве 0,02%, что превышает остаточное количество углерода в расплаве, после чего добавляли хром, тантал и алюминий.
Примеры 6 и 7 проводили аналогично примеру 5, при этом менялось количество вводимого углерода и давление (см. таблицу 2).
Пример 8 проводили по способу-прототипу.
Технологические параметры плавок и полученные результаты приведены в таблицах. Там же приведены технические характеристики плавок, выплавленных по способу-прототипу.
Из таблиц видно, что в примерах 1-3 и 5-7, соответствующих предлагаемому способу, содержания азота в 8-10 раз и кислорода в 1,7-2,5 раза ниже, чем в металле, выплавленном по способу-прототипу. Содержание углерода в примерах 1-3 и 5-7, соответствующих предлагаемому способу, не превышает его содержания в металле, выплавленном по способу-прототипу (примеры 4 и 8). Жаропрочность сплавов, выплавленных по предлагаемому способу по сравнению со способом-прототипом, повысилась на 30-35%, а выход годного по монокристальности примерно в 1,5 раза.
Использование предлагаемого способа позволит повысить жаропрочные свойства безуглеродистых литейных жаропрочных сплавов, полностью устранить брак монокристаллических лопаток по макроструктуре. Это обеспечит повышение ресурса и надежности работы авиационных газотурбинных двигателей и позволит снизить стоимость сплавов.
Таблица 1 | |||||||
№ п/п | Технологические параметры плавки | Содержание примесей в металле, % | Жаропрочность при 1100°C, =25 кгс/мм2, в часах | Выход годного по структуре, % | |||
Срасч. , % | давление, мм рт.ст. | N2 | O2 | C | |||
1 | 0,001 | 1×10-2 | 0,0002 | 0,0003 | 0,004 | 378 | 90 |
2 | 0,005 | 3×10 -2 | 0,0002 | 0,0003 | 0,004 | 368 | 93 |
3 | 0,010 | 10×10-2 | 0,0001 | 0,0002 | 0,003 | 360 | 92 |
4 | способ-прототип | 0,0017 | 0,0005 | 0,004 | 286 | 67 |
Таблица 2 | |||||||
№ п/п | Технологические параметры плавки | Содержание примесей в металле, % | Жаропрочность при 1100°C, =27 кгс/мм2, в часах | Выход годного по структуре, % | |||
Срасч. , % | давление, мм рт.ст. | N2 | O2 | C | |||
5 | 0,001 | 1×10-2 | 0,0001 | 0,0002 | 0,003 | 374 | 92 |
6 | 0,005 | 3×10 -2 | 0,0002 | 0,0002 | 0,004 | 358 | 90 |
7 | 0,010 | 10×10-2 | 0,0001 | 0,0003 | 0,004 | 362 | 90 |
8 | способ-прототип | 0,0015 | 0,0005 | 0,004 | 275 | 65 |