электростатический энергоанализатор заряженных частиц
Классы МПК: | H01J49/22 электростатическое отклонение |
Автор(ы): | Трубицын Андрей Афанасьевич (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования Рязанский государственный радиотехнический университет (RU) |
Приоритеты: |
подача заявки:
2009-11-25 публикация патента:
20.08.2011 |
Изобретение относится к области энергетического анализа потоков заряженных частиц, возбуждаемых рентгеновским излучением с поверхности твердого тела, и может быть использовано для улучшения аналитических, эксплуатационных и потребительских свойств электронных спектрометров, используемых для исследования объектов микро- и наноэлектроники методами рентгено-электронной спектроскопии. Технический результат - улучшение основного эксплуатационного параметра анализатора - чувствительности с одновременным упрощением компоновки спектрометра в целом. Решение поставленной задачи достигается путем использования трехступенчатого электростатического энергоанализатора заряженных частиц, обеспечивающего угловую фокусировку второго порядка типа «ось-кольцо» и диапазон входных углов, в пределах которого анализируются фотоэлектроны 60°±2°, что позволяет коаксиально встроить в анализатор рентгеновский источник, причем на практически минимально возможном расстоянии от образца. 1 ил.
Формула изобретения
Электростатический энергоанализатор заряженных частиц, содержащий последовательно расположенные первую отклоняющую, вторую фокусирующую и третью отклоняющую ступени, экранирующий электрод, входное окно в первой ступени, затянутое мелкоструктурной металлической сеткой, кольцеобразные диафрагмы между первой и второй, а также между второй и третьей ступенями, выходную кольцеобразную диафрагму, исследуемый образец и приемник электронов, источники питания, подключенные к электродам трех ступеней отклонения и фокусировки, источник рентгеновского излучения, отличающийся тем, что рентгеновский источник коаксиально встроен в анализатор, причем на минимально возможном расстоянии от образца.
Описание изобретения к патенту
Изобретение относится к области энергетического анализа потоков заряженных частиц, возбуждаемых рентгеновским излучением с поверхности твердого тела, и может быть использовано для улучшения аналитических, эксплуатационных и потребительских свойств электронных спектрометров, используемых для исследования объектов микро- и наноэлектроники методами рентгено-электронной спектроскопии.
Для обнаружения заряженных частиц с характеристическими энергиями необходимо выделять частицы, находящиеся в узком интервале энергий Е, для чего используют устройства, называемые энергоанализаторами. Чувствительность методов электронной спектроскопии определяется интенсивностью возбуждения поверхности и светосилой (телесным углом сбора) энергоанализатора. В электронной ожеспектроскопии (ЭОС) высокая чувствительность обеспечивается концентрическим расположением электронной пушки и светосильного анализатора типа "цилиндрическое зеркало" (ЦЗ). В рентгеновской спектроскопии (РЭС), несмотря на наличие мощных источников мягкого рентгеновского излучения, такая чувствительность не может быть реализована из-за технической невозможности совмещения мощного источника с классическим ЦЗ (входной угол ~ 42°). Дело в том, что соединить эти два прибора в коаксиальной геометрии невозможно из-за промежуточной фокусировки типа "ось-ось" в двухступенчатом варианте анализатора, используемом в РЭС, а также вследствие малого входного угла ЦЗ, не позволяющего встроить в него мощный источник на небольшом расстоянии от исследуемой поверхности.
Известен рентгено-электронный спектрометр [1], построенный на базе полусферического дефлектора с входной линзовой системой для транспортировки фотоэлектронов с поверхности исследуемого образца на вход энергоанализатора. Фотоэлектроны возбуждаются рентгеновским излучением источника, размещаемого на отдельном фланце. Регистрация коллектором вторичных частиц, возбужденных с поверхности исследуемого объекта рентгеновским излучением и имеющих определенную кинетическую энергию, достигается размещением в точке фокуса анализатора дырочной диафрагмы и подачей на внешнюю полусферу отклоняющего потенциала.
К недостаткам известного устройства относится малая светосила, приблизительно в 100 раз меньшая светосилы ЦЗ, невозможность разместить рентгеновский источник на малом расстоянии от исследуемого образца, и, как следствие, низкий уровень чувствительности. К тому же размещение рентгеновского источника и анализатора на различных фланцах создает проблемы с компактностью оборудования в целом.
Наиболее близким к предлагаемому является двухступенчатый электростатический энергоанализатор типа цилиндрическое зеркало [2], содержащий коаксиально расположенные внешний и внутренний цилиндры, с выполненными в них прорезями для пролета электронов, приемник частиц на основе вторичного электронного умножителя с размещенной перед ним дырочной диафрагмой и блок развертки потенциала, подключенный к цилиндрам анализатора, и совмещенный с ним, но располагаемый на отдельном фланце источник рентгеновского излучения. Регистрация коллектором вторичных частиц, возбужденных с поверхности исследуемого объекта рентгеновским излучением и имеющих определенную кинетическую энергию, достигается размещением в точке фокуса дырочной диафрагмы и подачей на внешние цилиндры отклоняющего потенциала.
К недостаткам известного устройства относится невозможность размещения рентгеновского источника на малом расстоянии от образца и, как следствие, низкая плотность рентгеновского излучения на поверхности и невысокий уровень чувствительности анализа вещества.
Техническая задача предлагаемого изобретения состоит в улучшении основного эксплуатационного параметра анализаторов - чувствительности с одновременным упрощением компоновки спектрометра в целом.
Решение указанной задачи достигается тем, что электростатический энергоанализатор заряженных частиц (см. чертеж), содержащий последовательно расположенные первую 1 отклоняющую, вторую 2 фокусирующую и третью 3 отклоняющую ступени, экранирующий электрод 18, входное окно 19 в первой ступени, затянутое мелкоструктурной металлической сеткой, кольцеобразные диафрагмы 9 и 12 между первой и второй, а также между второй и третьей ступенями соответственно, выходную кольцеобразную диафрагму 15, исследуемый образец 5 и приемник электронов 16, источники питания, подключенные к электродам ступеней отклонения и фокусировки, источник 4 рентгеновского излучения, отличается тем, что рентгеновский источник встроен в анализатор коаксиально его электродам, причем на минимально возможном расстоянии от образца, вплоть до наличия непосредственного соприкосновения образца с внешним экранирующим электродом анализатора.
Устройство работает следующим образом.
Исследуемый образец 5 облучается потоком рентгеновских квантов 6, в результате чего образец 5 испускает поток фотоэлектронов 7, который, преодолев пространство свободного дрейфа за счет начальной энергии Е между образцом 5 и первой ступенью 1 энергоанализатора, через входное окно 19 в электроде 17, затянутое мелкоструктурной металлической сеткой, попадает в отклоняющее и фокусирующее электростатическое поле ступени 1, созданное отрицательным потенциалом V1 на внешнем электроде 8. Сфокусированный поток электронов, имеющих энергию Е, проходит через кольцевую диафрагму 9 между ступенями 1 и 2 и попадает в фокусирующее поле линзовой ступени 2, созданное потенциалами V2 и V3 на электродах 10 и 11. Сфокусированный полем ступени 2 поток фотоэлектронов с энергией Е сквозь кольцевую диафрагму 12 между ступенью 2 и 3 проходит в отклоняющее и фокусирующее поле ступени 3, созданное потенциалом V4 на электроде 13 и потенциалом V5 на электроде 14. Сфокусированный полем ступени 3 поток фотоэлектронов сквозь кольцевую диафрагму 15 попадает на кольцевой приемник 16 электронов.
Электроды 17 и 18 анализатора заземлены. Электрод 18 выполняет роль электростатического и магнитного экрана.
Электростатический анализатор имеет полосовую функцию пропускания, т.е. на вход приемника 16 электронов попадают фотоэлектроны, энергия которых лежит в определенной полосе. Меняя отклоняющие потенциалы V1 и V4 и соответствующим образом меняя фокусирующие потенциалы V2 и V3, можно снять весь энергетический спектр фотоэлектронов, испускаемых образцом 5.
В регистрирующем устройстве (не показано), соединенным с приемником, энергетический спектр анализируется по энергии, в результате чего выявляются энергетические пики фотоэлектронов, по которым можно судить об элементном и химическом составе поверхности образца,
При внешнем радиусе экранирующего электрода 18, равном 82.5 мм, длина устройства составляет 142 мм, внешний радиус рентгеновского источника 25 мм, расстояние от рентгеновского источника до образца 5 мм. Отношение потенциалов V1 и V4 к энергии электронов Е равно 1, отношение потенциалов V2 и V3 к энергии электронов Е равно 0.1.
Анализатор обеспечивает угловую фокусировку второго порядка типа «ось-кольцо». Диапазон входных углов, в пределах которого анализируются фотоэлектроны 7, составляет 60°±2°. Большая величина 60° центрального угла позволяет приблизить рентгеновский источник 4 на практически минимально возможное расстояние от образца 5, вплоть до соприкосновения последнего с экраном 18. Дальнейшее увеличение центрального угла на практике не представляется возможным вследствие необходимости свободного пространства между образцом и левым торцом анализатора при реальной эксплуатации устройства. Минимально возможное расстояние «образец - рентгеновский источник» обеспечивает максимальную плотность облучения образца 5 рентгеновскими квантами 6, и при учете высокого значения светосилы (относительного телесного угла) /2 =6% энергоанализатора позволяет получить более высокое значение чувствительности анализа вещества, чем у прототипа, причем при упрощении компоновки спектрометра вследствие размещения энергоанализатора и рентгеновского источника на одном фланце.
Обозначения на чертеже:
1 - первая отклоняющая ступень
2 - фокусирующая ступень
3 - вторая отклоняющая ступень
4 - рентгеновский источник
5 - исследуемый образец
6 - рентгеновское излучение
7 - траектории фотоэлектронов
8 - внешний, отклоняющий электрод первой отклоняющей ступени
9 - кольцевая диафрагма
10, 11 - фокусирующие электроды
12 - кольцевая диафрагма
13 - внешний, первый отклоняющий электрод второй отклоняющей ступени
14 - второй отклоняющий электрод второй отклоняющей ступени
15 - выходная кольцевая диафрагма
16 - приемник электронов
17 - внутренний, заземленный электрод
18 - экранирующий электрод
19 - входное окно
ЛИТЕРАТУРА
1. Thomas W. Rush, Hopkins, Minn. United States Patent, Patent Number 4,737,639. - 1988.
2. Palmberg P.W. Combined ESCA / Auger system based on the double pass cylindrical mirror analyzer // J. Electron Spectr. - 1974. - № 5. - P.691-695.
Класс H01J49/22 электростатическое отклонение