способ формирования твердотопливного заряда торцевого горения
Классы МПК: | B01F3/12 жидкостей с твердыми веществами C06B21/00 Способы или устройства для обработки взрывчатых веществ, например формование, резка, сушка |
Автор(ы): | Андрюшкин Андрей Юрьевич (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") (RU) |
Приоритеты: |
подача заявки:
2010-03-15 публикация патента:
10.09.2011 |
Изобретение относится к перемешиванию жидких и порошкообразных веществ, обладающих текучестью, и может быть использовано при приготовлении многокомпонентных смесей, взрывчатых составов, а также смесевых твердых топлив. Компоненты твердого топлива перемешивают в смесителе. Полученную топливную смесь подают в формообразующий корпус, вакуумируют, формуют поршневым устройством, отверждают и извлекают из формообразующего корпуса. При этом из компонентов твердого топлива приготавливают обладающие текучестью две или более композиции. Каждую композицию с определенным расходом, изменяющимся по определенному закону в процессе формирования топливной смеси, подают в газодинамический факел распыления. Композиции диспергируют, перемешивают и гомогенизируют в газодинамическом факеле распыления, образованном, по крайней мере, двумя взаимодействующими струями рабочего газа, истекающими из сопел и охватывающими, по крайней мере, две струи композиций. Послойно напыляют композиции в формообразующий корпус, полученную топливную смесь вакуумируют, формуют поршневым устройством, отверждают и извлекают из формообразующего корпуса. Технический результат состоит в регулировании содержания компонентов твердого топлива по длине формируемого твердотопливного заряда торцевого горения. 1 з.п. ф-лы, 2 ил.
Формула изобретения
1. Способ формирования твердотопливного заряда торцевого горения, по которому компоненты твердого топлива перемешивают в смесителе, полученную топливную смесь подают в формообразующий корпус, топливную смесь вакуумируют, формуют поршневым устройством, отверждают и извлекают из формообразующего корпуса, отличающийся тем, что из компонентов твердого топлива приготавливают обладающие текучестью две или более композиции, каждую композицию с определенным расходом, изменяющимся по определенному закону в процессе формирования топливной смеси, подают в газодинамический факел распыления, композиции диспергируют, перемешивают и гомогенизируют в газодинамическом факеле распыления, образованном, по крайней мере, двумя взаимодействующими струями рабочего газа, истекающими из сопел, и охватывающими, по крайней мере, две струи композиций, послойно напыляют композиции в формообразующий корпус, полученную топливную смесь вакуумируют, формуют поршневым устройством, отверждают и извлекают из формообразующего корпуса.
2. Способ по п.1, отличающийся тем, что композиции диспергируют, перемешивают и гомогенизируют в газодинамическом факеле распыления, образованном, по крайней мере, двумя взаимодействующими сверхзвуковыми струями рабочего газа, истекающими из сопел, и охватывающими, по крайней мере, две струи композиций.
Описание изобретения к патенту
Изобретение относится к областям техники, использующим процессы перемешивания жидких и порошкообразных веществ, обладающих текучестью, и может быть использовано при приготовлении многокомпонентных смесей, взрывчатых составов, а также смесевых твердых топлив.
Известен «Способ смешения компонентов взрывчатых составов» по патенту РФ на изобретение № 2164221, включающий перемешивание жидковязких и сыпучих компонентов, при этом сначала жидковязкие и сыпучие компоненты дозируют в предварительный смеситель в количестве 8 12% рабочей загрузки верхнего смесителя и перемешивают в течение 10 15 мин, при перекрытом выходном отверстии, затем отверстие открывают и при включенных дозаторах заполняют верхний смеситель до полной рабочей загрузки, причем выгрузочный шнек этого смесителя вращают в обратном направлении в течение всего процесса загрузки, после заполнения верхнего смесителя в нижнем смесителе создают вакуум с остаточным давлением 5 10 мм рт.ст., после чего включают мешалки и шнек нижнего смесителя, а шнек верхнего смесителя переключают на выгрузку и далее ведут процесс в непрерывном режиме.
Недостатком известного способа по патенту РФ № 2164221 является невозможность изменения содержания компонентов взрывчатого состава по объему смеси из-за механического способа перемешивания с помощью шнека.
Известен «Способ смешения компонентов взрывчатых составов и формования из них изделий» по патенту РФ на изобретение № 2247100, принятый в качестве ближайшего аналога, включающий смешение компонентов в съемном корпусе вертикального смесителя планетарного типа, отсоединение съемного корпуса с перемешанным взрывчатым составом от вертикального смесителя и присоединение его к выгрузочному поршневому устройству для вытеснения взрывчатого состава из съемного корпуса и нагнетания его в формообразующий корпус, при этом смешение компонентов в съемном корпусе осуществляют без вакуумирования, вытесняют взрывчатый состав из съемного корпуса и нагнетают его в формообразующий корпус через массопровод с фильерой, смеситель с мешалками и формующий шнек, при вытеснении взрывчатого состава через фильеру на выходе из массопровода его вакуумируют при остаточном давлении от 0,5 до 20 мм рт.ст., температуру взрывчатого состава в массопроводе повышают выше температуры смешения на 10 20°С с последующим снижением ее в смесителе с мешалками и формующем шнеке до первоначальной величины, взрывчатый состав нагнетают в смеситель сначала при работающих мешалках и отключенном формующем шнеке до заполнения смесителя до верхнего края мешалок, затем нагнетание взрывчатого состава в формообразующий корпус ведут при включенном формующем шнеке, поддерживая уровень взрывчатого состава в смесителе по верхнему краю мешалок и не ниже 100 мм от него.
Недостатком известного способа по патенту РФ № 2247100 является отсутствие возможности изменения содержания компонентов взрывчатого состава по объему смеси из-за механического способа перемешивания мешалками в смесителе планетарного типа.
Перед заявляемым изобретением поставлена задача регулирования содержания компонентов твердого топлива по длине формируемого твердотопливного заряда торцевого горения.
Поставленная задача в заявляемом изобретении решается за счет того, что в способе формирования твердотопливного заряда торцевого горения, по которому компоненты твердого топлива перемешивают в смесителе, полученную топливную смесь подают в формообразующий корпус, топливную смесь вакуумируют, формуют поршневым устройством, отверждают и извлекают из формообразующего корпуса, из компонентов твердого топлива приготавливают обладающие текучестью две или более композиции, каждую композицию с определенным расходом, изменяющимся по определенному закону в процессе формирования топливной смеси, подают в газодинамический факел распыления, композиции диспергируют, перемешивают и гомогенизируют в газодинамическом факеле распыления, образованном, по крайней мере, двумя взаимодействующими струями рабочего газа, истекающими из сопел и охватывающими по крайней мере, две струи композиций, послойно напыляют композиции в формообразующий корпус, полученную топливную смесь вакуумируют, формуют поршневым устройством, отверждают и извлекают из формообразующего корпуса.
Композиции могут диспергировать, перемешивать и гомогенизировать в газодинамическом факеле распыления, образованном, по крайней мере, двумя взаимодействующими сверхзвуковыми струями рабочего газа, истекающими из сопел и охватывающими, по крайней мере, две струи композиций.
Заявленное изобретение отличается от известного технического решения по патенту РФ № 2247100 тем, что из компонентов твердого топлива приготавливают обладающие текучестью две или более композиции, каждую композицию с определенным расходом, изменяющимся по определенному закону в процессе формирования топливной смеси, подают в газодинамический факел распыления, композиции диспергируют, перемешивают и гомогенизируют в газодинамическом факеле распыления, образованном, по крайней мере, двумя взаимодействующими струями рабочего газа, истекающими из сопел и охватывающими, по крайней мере, две струи композиций, послойно напыляют композиции в формообразующий корпус, полученную топливную смесь вакуумируют, формуют поршневым устройством, отверждают и извлекают из формообразующего корпуса.
Указанное отличие позволило получить технический результат, а именно обеспечило регулирование содержания компонентов твердого топлива по длине формируемого твердотопливного заряда торцевого горения.
На фиг.1 представлена схема способа формирования твердотопливного заряда торцевого горения.
На фиг.2 представлен выносной элемент А на фиг.1, показано коническое сопло, расширяющееся в направлении истечения рабочего газа, применяемое для формирования сверхзвуковой струи рабочего газа.
В способе формирования твердотопливного заряда торцевого горения (фиг.1) компоненты твердого топлива перемешивают в смесителе 1, полученную топливную смесь 2 подают в формообразующий корпус 3, топливную смесь 2 вакуумируют, формуют поршневым устройством 4, отверждают и извлекают из формообразующего корпуса 3, при этом из компонентов твердого топлива приготавливают обладающие текучестью две или более композиции, каждую композицию с определенным расходом, изменяющимся по определенному закону в процессе формирования топливной смеси 2, подают в газодинамический факел распыления, композиции диспергируют, перемешивают и гомогенизируют в газодинамическом факеле распыления, образованном, по крайней мере, двумя взаимодействующими струями 5 рабочего газа, истекающими из сопел 6 и охватывающими, по крайней мере, две струи 7 композиций, послойно напыляют композиции в формообразующий корпус 3, полученную топливную смесь 2 вакуумируют, формуют поршневым устройством 4, отверждают и извлекают из формообразующего корпуса 3.
Работу по предлагаемому способу осуществляют следующим образом (фиг.1). В состав смесевого твердого топлива входят следующие компоненты: окислитель 40 80%, горючее-связующее 15 50%, легкие металлы 10 15%, катализаторы и другие добавки до 5%. Из компонентов твердого топлива приготавливают обладающие текучестью две или более композиции (жидкости, порошки). Каждую композицию с определенным расходом, изменяющимся по определенному закону в процессе формирования топливной смеси 2, подают в газодинамический факел распыления. Например, расход композиции № 1 в процессе формирования топливной смеси 2 уменьшается, а расход композиции № 2 - увеличивается. Можно предположить, что в состав композиции № 1 входит легкий металл - порошок алюминия. Порошок алюминия вводят для повышения удельного импульса смесевого твердого топлива. Таким образом, уменьшение расхода композиции № 1 в процессе формирования топливной смеси 2 приведет к тому, что содержание порошка алюминия будет уменьшаться по длине твердотопливного заряда от максимального значения на одном торце заряда до минимального значения на другом конце заряда. Рабочий газ подают в смеситель 1 под давлением к соплам 6, обычно объединенным коллектором 8. Распределяясь в коллекторе 8, рабочий газ истекает из сопел 6 в виде системы газодинамических струй 5, охватывающих струи 7 композиций, в результате образуется газодинамический факел распыления. Струи 7 композиций подвергаются аэродинамическому воздействию со стороны струй 5 рабочего газа, приводящему к распаду струй 7 композиций на капли. Применение конических сопел 6 (фиг.2) или сопел 6 Лаваля, расширяющихся в направлении истечения струй 5 рабочего газа, позволяет получить сверхзвуковой режим истечения рабочего газа. При сверхзвуковом режиме истечения рабочего газа образуется газодинамический факел распыления с развитой системой скачков уплотнения. Сверхзвуковые струи 5 расположены достаточно близко друг к другу и взаимодействуют между собой. При взаимодействии сверхзвуковых струй 5 образуется газодинамический факел распыления с развитой системой скачков уплотнения. Капли композиций, проходя через скачки уплотнения, дробятся на более мелкие, что приводит к повышению однородности топливной смеси 2. Образованное облако капель движется внутри отдельных газодинамических струй 5 рабочего газа. По мере падения скорости газодинамических струй 5 имеет место их смыкание в единый кольцевой поток, что приводит к резкой турбулизации внутреннего капельного потока, интенсивному перемешиванию и гомогенизации компонентов топлива. Рабочий газ из смесителя 1 отводят через отверстия в его боковой стенке. В результате постадийного процесса диспергации, перешивания и гомогенизации в газодинамическом факеле распыления и последующего послойного напыления в формообразующий корпус 3 формируют топливную смесь 2. При этом каждый слой топливной смеси 2 отличается от соседних слоев содержанием компонентов твердого топлива. Содержание определенного компонента твердого топлива в каждом слое определяется изменением расхода композиции, в состав которой входит данный компонент, в процессе формирования топливной смеси 2. Полученную топливную смесь 2 вакуумируют для исключения пор в толще заряда и повышения его монолитности. Далее топливную смесь 2 формуют поршневым устройством 4 и отверждают при температуре 60 80°С для ускорения реакции между связующим и отвердителем. Готовый твердотопливный заряд извлекают из формообразующего корпуса 3. В результате твердотопливный заряд имеет характеристики, которые изменяются по определенному закону при его горении. Например, таким способом можно изготовить твердотопливный заряд торцевого горения, у которого скорость горения в начале процесса горения будет максимальной, а в конце горения - минимальной.
Заявленное изобретение позволило получить технический результат, а именно обеспечило регулирование содержания компонентов твердого топлива по длине формируемого твердотопливного заряда торцевого горения.
Класс B01F3/12 жидкостей с твердыми веществами
Класс C06B21/00 Способы или устройства для обработки взрывчатых веществ, например формование, резка, сушка