система автономного обогрева помещений

Классы МПК:F24D12/02 содержащие несколько источников тепла
F24J2/00 Использование солнечного тепла, например солнечные тепловые коллекторы
F24J3/08 геотермального тепла
Автор(ы):, ,
Патентообладатель(и):Институт машиноведения и металлургии Дальневосточного отделения Российской академии наук (RU)
Приоритеты:
подача заявки:
2010-02-25
публикация патента:

Изобретение относится к теплотехнике, в частности к системам теплоснабжения помещений. В системе автономного обогрева помещений, содержащей систему сбора и утилизации тепла грунта, испаритель теплового насоса, буферную емкость горячего теплоснабжения, систему сбора тепла солнечной энергии, дополнительно контур циркуляции низкопотенциального теплоносителя содержит тепловые трубы, установленные в скважине с дополнительным теплообменником, в контуре системы отопления расположен теплообменник, выполненный в виде тепловых труб, система сбора тепла солнечной энергии содержит тепловые трубы с концентратами солнечной энергии, тепловой регулятор выполнен с равномерно расположенными каналами в виде оребренных труб для прохода нагреваемого воздуха и расширительным баком, вентилятор с регулируемым числом оборотов, воздухопроводы с зондами для обогрева помещения и теплообменника в контуре циркуляции низкопотенциального теплоносителя, датчик температуры и электрический клапан с системой автоматического управления обогревом. Технический результат - повышение эффективности передачи тепла, уменьшение расхода электроэнергии на транспортировку теплоносителя, уменьшение трудоемкости изготовления и обслуживания системы обогрева помещений. 1 ил.

система автономного обогрева помещений, патент № 2429423

Формула изобретения

Система автономного обогрева помещений, содержащая систему сбора и утилизации тепла грунта, включающая контур циркуляции низкопотенциального теплоносителя с теплообменником, испаритель теплового насоса, систему отопления и горячего водоснабжения, включающую конденсатор теплового насоса, буферную емкость горячего теплоснабжения, систему сбора тепла солнечной энергии, отличающаяся тем, что контур циркуляции низкопотенциального теплоносителя содержит тепловые трубы, установленные в скважине с дополнительным теплообменником, в контуре системы отопления расположен теплообменник, выполненный в виде тепловых труб, система сбора тепла солнечной энергии содержит тепловые трубы с концентраторами солнечной энергии, тепловой аккумулятор выполнен с равномерно расположенными каналами в виде оребренных труб для прохода нагреваемого воздуха и расширительным баком, вентилятор с регулируемым числом оборотов, воздухопроводы с зондами для обогрева помещения и теплообменника в контуре циркуляции низкопотенциального теплоносителя, датчик температуры и электрический клапан с системой автоматического управления обогревом.

Описание изобретения к патенту

Изобретение относится к теплотехнике, в частности к системам теплоснабжения жилых и других помещений на основе использования низкопотенциальных источников энергии.

Известна система автономного теплоснабжения потребителей с использованием низкопотенциального источника тепла и электроснабжения от возобновляемых источников энергии [патент № 2350847 RU. Д.С.Огребков, В.В.Харченко, В.В.Чемеков. Опубл. 27.03.09. Бюл. № 9], содержащая систему сбора и утилизации тепла грунта, включающую контур циркуляции низкопотенциального теплоносителя, проходящий через скважинные теплообменники, контур холодоснабжения и испаритель теплового насоса, систему отопления и горячего водоснабжения, включающую конденсатор теплового насоса, буферную емкость горячего теплоснабжения, емкостный водонагреватель с двумя теплообменниками и электрическим тепловым нагревателем, контур отопления и горячего водоснабжения, систему сбора тепла солнечной энергии, включающую контур циркуляции теплоносителя солнечного коллектора с солнечным коллектором и регулятором контура солнечного коллектора, подключенную через один вывод трехходового переключающего клапана к теплообменнику емкостного водонагревателя для приготовления горячей воды, причем система тепла солнечной энергии через второй вывод трехходового переключающего клапана подключена к теплообменнику в контуре циркуляции низкопотенциального теплоносителя с возможностью передачи тепла на догрев низкопотенциального теплоносителя перед подачей в испаритель теплового насоса.

Недостатком известной системы автономного теплоснабжения потребителей [патент № 2350847 RU] является то, что в систему сбора тепла солнечной энергии включен жидкостный контур циркуляции теплоносителя солнечного коллектора с насосом и трубопроводами. В результате увеличивается расход электроэнергии на транспортировку теплоносителя в жидком состоянии по трубопроводам и теплообменникам. Кроме этого, возникает необходимость прокладки трубопроводов с их периодической проверкой на предмет утечек теплоносителя.

Необходимость циркуляции низкопотенциального теплоносителя через скважинные теплообменники, установленные на глубине до 5 и более метров, дополнительно увеличивает расход электроэнергии.

Заявляемая система автономного обогрева помещений направлена на повышение эффективности и надежности ее работы.

Технический результат, полученный при осуществлении заявляемой системы, заключается в следующем:

- уменьшение расхода электроэнергии на транспортировку теплоносителя;

- уменьшение трудоемкости изготовления и обслуживания системы обогрева;

- повышение эффективности передачи тепла в результате использования теплообменников, выполненных в виде тепловых труб.

Заявляемая система обогрева помещений характеризуется следующими существенными признаками.

Ограничительные признаками: система сбора и утилизации тепла грунта, включающая контур циркуляции низкопотенциального теплоносителя с теплообменником; испаритель теплового насоса; система отопления и горячего водоснабжения, включающая конденсатор теплового насоса; буферная емкость горячего теплоснабжения; система сбора тепла солнечной энергии.

Отличительные признаки: контур циркуляции низкопотенциального теплоносителя содержит тепловые трубы, установленные в скважине с дополнительным теплообменником; в контуре системы отопления расположен теплообменник, выполненный в виде тепловых труб; система сбора тепла солнечной энергии содержит тепловые трубы с концентраторами солнечной энергии; тепловой аккумулятор выполнен с равномерно расположенными каналами в виде оребренных труб для прохода нагреваемого воздуха и расширительным баком; вентилятор с регулируемым числом оборотов; воздухопроводы с зондами для обогрева помещения и теплообменника в контуре циркуляции низкопотенциального теплоносителя; датчик температуры и электрический клапан с системой автоматического управления обогревом.

Причинно-следственная связь между совокупностью существенных признаков заявляемой системы автономного обогрева помещений и достигаемым техническим результатом заключается в следующем.

Наличие в контуре циркуляции низкопотенциального теплоносителя тепловых труб, установленных в скважине, уменьшает затраты энергии на прокачивание теплоносителя в трубах. Кроме этого, повышается эффективность утилизации тепла грунта.

Наличие дополнительного теплообменника в контуре циркуляции низкопотенциального теплоносителя позволяет отводить тепло с наружной поверхности тепловых труб.

Наличие в контуре системы отопления теплообменника, выполненного в виде тепловых труб, уменьшает затраты энергии на продавливание через него теплоносителя, повышает эффективность отвода тепла, уменьшает затраты времени на очистку теплообменника от загрязнений.

Наличие в системе солнечной энергии тепловых труб с концентраторами солнечной энергии позволяет исключить дополнительный контур циркуляции теплоносителя с солнечным коллектором, что упрощает систему обогрева помещений.

Наличие теплового аккумулятора с равномерно расположенными каналами в виде оребренных труб позволяет отводить и циркулировать тепло от тепловых труб, нагреваемых солнечной энергией, и подавать через каналы нагреваемый воздух для обогрева помещений.

Наличие расширительного бака, расположенного над тепловым аккумулятором, исключает потери теплоносителя при его нагревании с расширением.

Наличие вентилятора с регулируемым числом оборотов позволяет регулировать интенсивность отбора тепла воздухом от теплового аккумулятора и, соответственно, регулировать количество тепла, передаваемого в обогреваемое помещение.

Наличие воздухопроводов с зондами позволяет подводить нагретый воздух в помещение и равномерно распределять его. Подвод нагретого воздуха по воздухопроводу к теплообменнику в контуре циркуляции низкопотенциального теплоносителя позволяет подогревать теплоноситель перед подачей его в испаритель теплового насоса.

Наличие датчика температуры в помещении, подключенного в систему автоматического управления обогревом, позволяет производить автоматическое включение и выключение вентилятора, подающего с воздухом в помещение тепло.

Наличие электрического клапана позволяет производить автоматическое переключение потока нагретого воздуха.

Наличие системы автоматического управления обогревом помещений позволяет автоматически регулировать температуру воздуха в помещении.

На чертеже приведен внешний вид заявляемой системы автономного обогрева помещений.

Заявляемая система автономного обогрева помещений состоит из контура 1 циркуляции низкопотенциального теплоносителя с испарителем 2, теплового насоса 3, насоса 4, теплообменника 5, дополнительного теплообменника 6 с тепловыми трубами 7, установленными в скважине, системы отопления и горячего водоснабжения, включающей конденсатор 8 теплового насоса, теплообменник 9 в виде тепловых труб, буферную емкость 10 с насосом 11, электрический клапан 12 и 21, кран 13 системы сбора тепла солнечной энергии, включающей стеклянное покрытие 14, тепловые трубы 15 с концентраторами 16 солнечной энергии, тепловой аккумулятор 17 с равномерно расположенными каналами 18 в виде оребренных труб 19, расширительный бак 20, вентилятор 22, воздухопроводы с зондами 23-25, электрических клапанов 26 и 27, датчик температуры 28, подключенных в систему автоматического управления обогревом помещения.

Работа заявляемой системы автономного обогрева помещений осуществляется следующим образом.

При помощи тепловых труб 7 тепло из скважин передается в дополнительном теплообменнике 6 низкопотенциальному теплоносителю, циркулирующему в контуре 1 при помощи насоса 4. Нагретый низкопотенциальный теплоноситель проходит в испаритель 2 теплового насоса 3, передает тепло хладагента, циркулирующего в контуре хладагента теплового насоса. В результате хладагент испаряется и его пары сжимаются в компрессоре теплового насоса, что приводит к повышению температуры хладагента.

Теплота хладагента передается воде системы отопления, циркулирующей через конденсатор 8 теплового насоса 3. Нагретая вода подается насосом 11 через теплообменник 9, выполненный в виде тепловых труб, в буферную емкость 10. Вода, проходящая в теплообменнике 9, передает тепло через тепловые трубы окружающему воздуху. В летний период при отсутствии необходимости нагрева воздуха в помещении системой электрического управления закрывается электрический клапан 21 и открывается электрический клапан 12, что позволяет нагретой воде поступать только в буферную емкость 10, служащую для горячего водоснабжения при открытом кране 13.

Дополнительно, в системе сбора тепла солнечной энергии под воздействием солнечного излучения, падающего через стеклянное покрытие 14 на концентратор солнечной энергии 16, происходит разогрев тепловых труб 15 с передачей тепла в тепловой аккумулятор 17 с расширительным баком 20. После включения вентилятора 22 воздух через зонд по воздухопроводу 23 поступает в равномерно расположенные каналы 18 в виде оребренных труб 19 теплового аккумулятора 17, где нагревается и по воздухопроводу 24 через открытый электрический клапан 27 поступает в обогреваемое помещение, температура в котором контролируется по показаниям датчика температуры 28. После достижения заданной температуры в помещении системой автоматического управления обогревом помещения закрывается электрический клапан 27 и открывается электрический клапан 26. В результате нагретый воздух через воздухопровод с зондом 25 поступает в теплообменник 5 на подогрев низкопотенциального теплоносителя.

Класс F24D12/02 содержащие несколько источников тепла

Класс F24J2/00 Использование солнечного тепла, например солнечные тепловые коллекторы

способ изготовления поглощающего покрытия для солнечного нагрева, покрытие и его применение -  патент 2528486 (20.09.2014)
солнечный водонагреватель -  патент 2527270 (27.08.2014)
вакуумная труба солнечного коллектора -  патент 2527220 (27.08.2014)
солнечный коллектор -  патент 2525055 (10.08.2014)
энергоэффективный солнечный коллектор -  патент 2523616 (20.07.2014)
панель солнечного коллектора и система панелей солнечного коллектора -  патент 2521523 (27.06.2014)
теплообменная панель и способ ее сборки -  патент 2520775 (27.06.2014)
способ преобразования солнечной энергии в химическую и аккумулирование ее в водородсодержащих продуктах -  патент 2520475 (27.06.2014)
концентратор солнечного излучения (варианты) -  патент 2519530 (10.06.2014)
способ веерной концентрации солнечной энергии и устройство для его осуществления -  патент 2516728 (20.05.2014)

Класс F24J3/08 геотермального тепла

петротермальная электростанция и устройство монтажа теплоотборной системы петротермальной электростанции -  патент 2529769 (27.09.2014)
способ комплексного использования геотермального тепла с помощью пароэжекторного теплового насоса -  патент 2528213 (10.09.2014)
сеть для нагревания и охлаждения зданий -  патент 2486416 (27.06.2013)
система для извлечения гидротермальной энергии из глубоководных океанических источников и для извлечения ресурсов со дна океана -  патент 2485316 (20.06.2013)
способ посезонного использования низкопотенциального тепла приповерхностного грунта и скважинные теплообменники для осуществления вариантов способа -  патент 2483255 (27.05.2013)
грунтовый теплообменник -  патент 2472076 (10.01.2013)
система теплоснабжения и горячего водоснабжения на основе возобновляемых источников энергии -  патент 2445554 (20.03.2012)
геоэлектростанция и способ повышения ее мощности -  патент 2441185 (27.01.2012)
установка для использования геотермальной энергии низкотемпературных подземных горных пород -  патент 2430312 (27.09.2011)
система и распределительная цистерна для сети низкотемпературной энергии -  патент 2429428 (20.09.2011)
Наверх