способ изготовления абсорбционной панели для солнечных коллекторов

Классы МПК:F24J2/04 тепловые солнечные коллекторы с рабочей средой, проходящей через коллектор
F24J2/48 отличающиеся поглощающим материалом
Автор(ы):, , , , , , , , ,
Патентообладатель(и):ГИДРО АЛЮМИНИУМ ДОЙЧЛАНД ГМБХ (DE)
Приоритеты:
подача заявки:
2007-08-24
публикация патента:

Изобретение относится к способу изготовления абсорбционной панели для солнечных коллекторов из металлической ленты, в частности из алюминия или алюминиевого сплава. Способ, при котором ленту при применении способа нанесения покрытия в рулонах лакируют высокоизбирательным покрытием, имеющим очень высокие абсорбционные свойства для солнечного света и обеспечивающим очень низкое тепловое излучение. Высокоизбирательное покрытие наносят при применении, по меньшей мере, одного лакировального валика, при этом наносят несколько функциональных слоев при применении лакировальных валиков, а толщины слоев отдельных функциональных слоев составляют от 0,0005 до 0,02 мм. Абсорбционная панель солнечного коллектора имеет высокоизбирательное, нанесенное при применении способа нанесения покрытия в рулонах покрытие для улучшения абсорбционных свойств. Изобретение должно обеспечить разработку способа изготовления абсорбционной панели для солнечных коллекторов, с помощью которого могла бы быть без больших затрат изготовлена абсорбционная панель с высокоизбирательным покрытием, которое обеспечивает очень высокие абсорбционные свойства для солнечного света и очень низкое тепловое излучение. 2 н. и 10 з.п. ф-лы, 1 ил. способ изготовления абсорбционной панели для солнечных коллекторов, патент № 2429427

способ изготовления абсорбционной панели для солнечных коллекторов, патент № 2429427

Формула изобретения

1. Способ изготовления абсорбционной панели для солнечных коллекторов из металлической ленты, в частности из алюминия или алюминиевого сплава, при котором ленту при применении способа нанесения покрытия в рулонах лакируют высокоизбирательным покрытием, имеющим очень высокие абсорбционные свойства для солнечного света и обеспечивающим очень низкое тепловое излучение, отличающийся тем, что высокоизбирательное покрытие наносят при применении, по меньшей мере, одного лакировального валика, при этом наносят несколько функциональных слоев при применении лакировальных валиков, а толщины слоев отдельных функциональных слоев составляют от 0,0005 до 0,02 мм.

2. Способ по п.1, отличающийся тем, что наносят слой вещества, повышающего прочность сцепления, или первичный слой, который преимущественно наносят при предварительной обработке.

3. Способ по п.1, отличающийся тем, что нанесенные слои содержат функциональные частицы, в частности наночастицы, металлические частицы, частицы оксида металла и/или пигменты.

4. Способ по п.1 или 3, отличающийся тем, что слой или несколько слоев наносят на зольгелиевую основу.

5. Способ по п.1 или 3, отличающийся тем, что нанесенное покрытие имеет, по меньшей мере, частично упругие свойства.

6. Абсорбционная панель солнечного коллектора, изготовленная из металлической ленты согласно способу по пп.1-5, причем абсорбционная панель имеет высокоизбирательное нанесенное при применении способа нанесения покрытия в рулонах покрытие для улучшения абсорбционных свойств, отличающаяся тем, что высокоизбирательное покрытие состоит из нескольких функциональных слоев, нанесенных при применении, по меньшей мере, одного лакировального валика, а толщины слоя отдельных функциональных слоев составляют от 0,0005 до 0,02 мм.

7. Абсорбционная панель по п.6, отличающаяся тем, что абсорбционная панель состоит из алюминия или алюминиевого сплава.

8. Абсорбционная панель по п.6 или 7, отличающаяся тем, что функциональные слои имеют, по меньшей мере, частично функциональные частицы, в частности наночастицы, частицы металла, частицы оксида металла и/или пигменты.

9. Абсорбционная панель по п.6 или 7, отличающаяся тем, что предусмотрен слой вещества, повышающего прочность сцепления, или первичный слой.

10. Абсорбционная панель по п.6 или 7, отличающаяся тем, что предусмотрен, по меньшей мере, один функциональный слой на зольгелиевой основе.

11. Абсорбционная панель по п.6 или 7, отличающаяся тем, что абсорбционная панель имеет чеканку, нанесенную перед или после покрытия.

12. Применение абсорбционной панели по пп.6-12 для солнечных коллекторов, в частности плоских коллекторов.

Описание изобретения к патенту

Изобретение относится к способу изготовления абсорбционной панели для солнечных коллекторов из металлической ленты, в частности из алюминия или алюминиевого сплава. Кроме того, изобретение относится к абсорбционной панели для солнечных коллекторов, а также к предпочтительному применению абсорбционной панели.

Солнечные коллекторы представляют собой устройства для получения тепла из солнечного излучения. Солнечный коллектор собирает и абсорбирует энергию, содержащуюся в солнечном свете, причем в противоположность установкам, использующим фотогальванический эффект, с высоким коэффициентом полезного действия используется почти весь спектр излучения солнечного света. Важнейшей составной частью коллектора является абсорбер, который преобразует световую энергию солнца в тепло и передает его протекающему через него теплоносителю. Абсорбер выполнен обычно в виде абсорбционной панели, которая по возможности хорошо должна улавливать прямое и рассеянное солнечное излучение и преобразовывать в тепло. Абсорбционная панель, часто состоящая из медного сплава или алюминиевого сплава, должна кроме прочего обеспечивать, чтобы поглощенное тепло не отдавалось снова посредством излучения. Чтобы минимизировать энергетические потери вследствие эмиссии теплового излучения абсорбционной панелью, она имеет так называемое высокоизбирательное покрытие. Коэффициенты поглощения высокоизбирательного покрытия обычно составляют для солнечного света около 94% и коэффициенты эмиссии менее 6%. Высокоизбирательные покрытия состоят из экстремально тонких слоев, изготавливаемых обычно способом (PVD) - нанесения покрытия осаждением паров или способом (CVD) - химическим осаждением из паровой или газовой среды. При осуществлении способа (PVD) лента пропускается через систему шлюзов в установке для вакуумного покрытия и проходит там несколько установленных последовательно друг за другом катодов, на которых в качестве мишени размещен материал покрытия. Ускоренными ионами аргона из мишени выбиваются частицы материала покрытия и осаждаются на поверхности металлической ленты, причем они образуют прочное соединение с этой металлической лентой. Затем лента через шлюз выходит из вакуума и наматывается. Хотя с помощью известных способов может быть получены небольшие толщины слоя, инвестиционные затраты для установок PVD или CVD, однако, очень высоки. Это, в свою очередь, сказывается на стоимости абсорбционной панели.

Задача предлагаемого изобретения состоит в разработке способа изготовления абсорбционной панели для солнечных коллекторов, с помощью которого абсорбционная панель с высокоизбирательным покрытием может быть изготовлена без больших затрат. Кроме прочего в основе данного изобретения лежит задача предложить изготавливаемую экономичным способом абсорбционную панель.

Согласно первой идее настоящего изобретения указанная задача, касающаяся способа, решается с помощью того, что лента при применении способа нанесения покрытия в рулонах лакируется высокоизбирательным покрытием, имеющим очень высокие абсорбционные свойства для солнечного света, и обеспечивает очень низкое тепловое излучение.

Оказалось, что при применении способа нанесения покрытия в рулонах на ленту может однородно наносится также очень тонкое покрытие, так что для изготовления абсорбционной панели на ленту может наноситься высокоизбирательное покрытие, имеющее соответственно тонкие слои. Для предложенного в соответствии с изобретением способа в противоположность к применяемым до сих способам нет необходимости в каких-либо высоких инвестиционных затратах, так как, в частности, нет необходимости подачи через шлюз и выведения через шлюз в вакуум из вакуума для покрытия ленты. В этом случае лента может, например, сначала наматываться в рулон и затем нарезаться по размеру. Но возможно также непосредственное разделение ленты после нанесения покрытия в рулонах.

Согласно первому предпочтительному варианту исполнения предложенного в соответствии с изобретением способа покрытие наносится при применении, по меньшей мере, одного лакировального валика. С помощью лакировального валика за счет его гравировки и, например, относительной скорости относительно ленты может очень точно регулироваться толщина слоя.

Но, кроме того, возможны также и другие способы лакирования ленты, например нанесение порошковых покрытий или напыление на поверхность ленты.

Преимущественно при способе нанесения покрытия в рулонах наносится некоторое количество функциональных слоев, так что свойства высокоизбирательного покрытия могут регулироваться с помощью выбора различных функциональных слоев.

При этом толщина отдельных функциональных слоев составляет от 0,0005 до 0,02 мм.

Согласно следующему усовершенствованному варианту осуществления способа для изготовления абсорбционной панели, предложенного в соответствии с изобретением, на поверхность ленты наносится слой вещества, повышающего прочность сцепления, или первичный слой, который преимущественно наносится при предварительной обработке. С помощью слоя вещества, повышающего прочность сцепления, или первичного слоя заметно улучшаются свойства сцепления поверхности ленты с последующими функциональными слоями. Слой вещества, повышающего прочность сцепления, но также и первичный слой преимущественно наносится при предварительной обработке, так что нанесение высокоизбирательного покрытия не нарушается при нанесении слоя вещества, повышающего прочность сцепления или первичного слоя. Кроме того, в этом случае улучшенные свойства сцепления поверхности ленты могут использоваться при нанесении других слоев. Также слой вещества, повышающего прочность сцепления, при этом может накладываться уже в качестве функционального покрытия (высокоизбирательного).

Содержание нанесенных слоев функциональных частиц, в частности наночастиц, частиц металла, частиц оксидов металла и/или пигментов может реализоваться с помощью отдельных нанесенных слоев с различными функциями. Например, антибликовые свойства или абсорбционные свойства слоя могут определяться выбором функциональных частиц.

Особо малая толщина слоя может быть получена благодаря тому, что наносится один или несколько слоев на зольгелиевую основу. При нанесении покрытия на зольгелиевую основу сначала наносят жидкую пленку из золя, которая после короткого высыхания трансформируется в твердую гелиевую пленку. Благодаря дальнейшей тепловой обработке затем удаляются органические составляющие металлоорганических полимеров, так что на поверхности остается, например, пленка из оксида металла. Это может, например, использоваться при изготовлении абсорбционного слоя путем осаждения на поверхности частиц диоксида титана или при нанесении просветляющего слоя путем осаждения пленки из диоксида кремния на ленту. Полученная толщина слоя при этом может быть очень малой. Функциональность частиц при этом может быть достигнута только в процессе сушки.

Наконец, другие преимущества следуют из того, что нанесенное покрытие, обладает, по меньшей мере, частично упругими свойствами. В этом случае можно также после покрытия на абсорбционную панель нанести чеканку, чтобы увеличить поверхность абсорбции, без образования трещин в покрытии.

Согласно второй идее настоящего изобретения указанная выше задача с помощью абсорбционной панели решается благодаря тому, что абсорбционная панель имеет высокоизбирательное, нанесенное способом нанесения в рулонах покрытие для улучшения абсорбционных свойств.

Как уже отмечалось, покрытие, нанесенное при применении способа нанесения в рулонах, может создаваться существенно дешевле, чем при применении до сих пор используемых способов PVD или CVD, так как отпадают инвестиционные затраты на требующую больших затрат вакуумную технологию и могут достигаться существенно более высокие скорости покрытия.

Другое преимущество в отношении затрат и веса может согласно предложенной в изобретении абсорбционной панели быть достигнуто согласно следующему варианту исполнения благодаря тому, что абсорбционная панель состоит из алюминия или алюминиевого сплава. По сравнению с медью алюминий имеет существенно меньший вес при аналогичных свойствах теплопроводности. Кроме того, алюминий как материал значительно дешевле меди.

Абсорбционная панель, оптимизированная в отношении абсорбционных свойств, кроме того, может быть получена благодаря тому, что высокоизбирательное покрытие состоит из некоторого количества функциональных слоев, причем функциональные слои имеют, по меньшей мере, частично функциональные частицы, например наночастицы, металлические частицы, частицы оксидов металлов и/или пигменты. Таким образом, можно с помощью выбора функциональных частиц оптимизировать отдельные слои в отношении их функций. Например, один функциональный слой может иметь свойство, что он абсорбирует коротковолновое солнечное излучение и одновременно является прозрачным для длинноволнового теплового излучения. Таким образом, достигается ретрансляция коротковолнового солнечного излучения, преобразованного в длинноволновое теплое излучение, так что абсорбционная панель соответственно нагревается. Одновременно внешние слои могут быть отражающими для теплового излучения, так что абсорбционный слой почти не эмитирует тепловое излучение наружу. Кроме того, другими задачами являются защита поверхности от коррозии, например, вследствие влажности, и стойкость к температуре, или свойства, повышающие прочность сцепления, которые существенно улучшают покрытие металлической подложки.

Толщина названных функциональных слоев абсорбционной панели составляет преимущественно от 0,0005 до 0,02 мм.

Как уже упоминалось, абсорбционная панель может быть получена с улучшенными свойствами сцепления для функциональных слоев благодаря наличию вещества, повышающего прочность сцепления или первичного слоя.

Особенно тонкий слой может быть получен согласно следующему варианту осуществления предложенной в соответствии с изобретением абсорбционной панели благодаря тому, что, по меньшей мере, один функциональный слой предусмотрен на зольгелиевой основе.

Свойства абсорбции тепла предложенной в соответствии с изобретением абсорбционной панели могут, кроме прочего, далее улучшаться благодаря тому, что абсорбционная панель имеет выполненную перед или после покрытия чеканку. Благодаря чеканке увеличивается имеющаяся в распоряжении поверхность панели для абсорбции.

Наконец, указанная выше задача решается с помощью применения предложенной в соответствии с изобретением абсорбционной панели для солнечных коллекторов, в частности плоских коллекторов. Изготовленная, не требующая больших затрат абсорбционная панель может, как уже было изложено, способствовать существенному снижению стоимости солнечных коллекторов или плоских коллекторов при таком же коэффициенте полезного действия.

Теперь имеется большое число возможностей усовершенствования и развития предложенного в соответствии с изобретением способа для изготовления абсорбционной панели для солнечных коллекторов, а также предложенной согласно изобретению абсорбционной панели и ее применения. Для этого, с одной стороны, делается ссылка на пункты формулы изобретения, следующие за пунктами 1 и 9 формулы, с другой стороны, на описание примера осуществления в сочетании с чертежом.

На единственном чертеже показан схематический вид разреза поверхности примера осуществления предложенной в соответствии с изобретением абсорбционной панели.

На чертеже показана поверхность абсорбционной панели 1, имеющая покрытие, состоящее из трех функциональных слоев 2, 3, 4. Функциональный слой 2 в данном случае образован в виде слоя вещества, повышающего прочность сцепления, или первичного слоя, который при предварительной обработке уже нанесен на поверхность ленты. Функциональный слой 3 состоит в представленном на фиг.1 примере осуществления предложенной в соответствии с изобретением абсорбционной панели из абсорбционного слоя, включающего зольгелиевую основу, который содержит наночастицы, например, нитрит титана или частицы диоксида титана. Абсорбционный слой 3 преимущественно прозрачен для длинноволнового теплового излучения и таким образом позволяет с помощью преобразования коротковолнового солнечного излучения в длинноволновое солнечное излучение ретрансляцию тепловой энергии на поверхность абсорбционной панели. Равным образом нанесенный с помощью способа нанесения покрытия в рулонах и базирующийся на зольгелиевой основе просветляющий слой 4 позволяет иметь коэффициент отражения покрытой абсорбционной панели очень низким, так как с помощью просветляющего слоя осуществляется подгонка показателя преломления. Таким образом, также достигается повышение абсорбции солнечного света. Все названные функциональные слои 2, 3, 4 согласно изобретению наносятся с помощью способа нанесения покрытия в рулонах, при котором преимущественно применяются лакировальные валики. Слои на зольгелиевой основе простым способом наносятся с помощью этих валиков для нанесения покрытий. Правда, возможны и другие способы нанесения покрытий при применении способа нанесения покрытий в рулонах, например применении инструментов для напыления или нанесения покрытий из порошков.

Класс F24J2/04 тепловые солнечные коллекторы с рабочей средой, проходящей через коллектор

когенерационная фотоэлектрическая тепловая система -  патент 2509268 (10.03.2014)
солнечно-ветровой воздухонагреватель -  патент 2484387 (10.06.2013)
перфорированное прозрачное остекление для извлечения тепла и нагрева воздуха за счет солнечного излучения -  патент 2473848 (27.01.2013)
система теплохладоснабжения -  патент 2460949 (10.09.2012)
теплонасосная система -  патент 2433359 (10.11.2011)
солнечный коллектор для работы в условиях северных территорий -  патент 2428637 (10.09.2011)
гелиоэлектроводонагреватель -  патент 2426035 (10.08.2011)
солнечный коллектор -  патент 2407957 (27.12.2010)
многофункциональный солнечный коллектор -  патент 2388974 (10.05.2010)
солнечный коллектор -  патент 2330217 (27.07.2008)

Класс F24J2/48 отличающиеся поглощающим материалом

Наверх