способ определения экотоксикантов в атмосфере промышленных зон

Классы МПК:G01N33/00 Исследование или анализ материалов особыми способами, не отнесенными к группам  1/00
A01G15/00 Способы и устройства для изменения атмосферных условий
Автор(ы):, ,
Патентообладатель(и):Государственное образовательное учреждение Высшего профессионального образования Тверской государственный университет (RU),
Мейсурова Александра Федоровна (RU),
Пахомов Павел Михайлович (RU),
Хижняк Светлана Дмитриевна (RU)
Приоритеты:
подача заявки:
2009-06-17
публикация патента:

Изобретение относится к способу определения экотоксикантов в атмосфере промышленных зон с применением лишайников в качестве показателей содержания экотоксикантов. Способ включает сбор образцов лишайника «Hypogymnia physodes» с деревьев, растущих в промышленной зоне, и образцов лишайника с деревьев, растущих в фоновой зоне, не имеющей промышленных выбросов экотоксикантов. Затем осуществляют моделирование процесса взаимодействия лишайника фоновой зоны с промышленными выбросами в лабораторных условиях и получение стандартных образцов лишайника. После проводят сравнение образцов лишайника, собранных в промышленной зоне, со стандартами. При этом стандарты и образцы, собранные в промышленной зоне, сушат при температуре 25-35°С до постоянного веса, измельчают в вибромельнице, прессуют в смеси с бромидом калия при давлении 2,6·106 Па с получением таблеток. Затем снимают ИК-спектры стандартов, снимают ИК-спектры образцов промышленной зоны и сравнивают их с ИК-спектрами стандартов. Достигаемый при этом технический результат заключается в возможности определения как природы, так и содержания экотоксикантов в атмосфере. 5 ил., 4 табл.

способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357

Формула изобретения

Способ определения экотоксикантов в атмосфере промышленных зон, содержащий сбор образцов лишайника «Hypogymnia physodes» с деревьев, растущих в промышленной зоне, образцов лишайника с деревьев, растущих в фоновой зоне, не имеющей промышленных выбросов экотоксикантов, моделирование процесса взаимодействия лишайника фоновой зоны с промышленными выбросами в лабораторных условиях, получение стандартных образцов лишайника, сравнение образцов лишайника, собранных в промышленной зоне, со стандартами, отличающийся тем, что стандарты и образцы, собранные в промышленной зоне, сушат при температуре 25-35°С до постоянного веса, измельчают в вибромельнице, прессуют в смеси с бромидом калия при давлении 2,6·106 Па с получением таблеток, снимают ИК-спектры стандартов, снимают ИК-спектры образцов промышленной зоны и сравнивают их с ИК-спектрами стандартов.

Описание изобретения к патенту

Изобретение относится к области применения лишайников в качестве показателей содержания экотоксикантов в атмосфере промышленных зон.

Известен способ определения экотоксикантов в атмосфере промышленных зон с помощью применения биоиндикатора - лишайника HYPOGYMNIA PHYSODES (L.) NYL (Шапиро И.А. Влияние сернистого ангидрида на содержание азота и пероксидазную активность у лишайников // Ботан. журн. 1993. Т.78, № 5. С.66-71), так называемая лихеноиндикация, содержащий:

- выборку образцов лишайника в промышленной зоне в соответствии со статистической программой;

- изготовление стандартов из лишайника, собранного в фоновой зоне, не имеющей выбросов в атмосферу экотоксикантов;

- моделирование процесса взаимодействия лишайника с промышленными выбросами в лабораторных условиях;

- визуальный анализ стандартов и образцов из промышленной зоны путем их сопоставления, составление шкалы полеотолерантности;

- определение степени загрязнения атмосферы промышленной зоны по отношению к фоновой зоне с помощью шкалы полеотолерантности.

Недостатки известного способа:

- невозможность количественного определения экотоксикантов в атмосфере промышленных зон;

- невозможность выявления химической природы экотоксикантов.

Технический результат изобретения заключается в разработке качественного и количественного определения экотоксиканатов в атмосфере промышленных зон при максимальном приближении результатов к условиям существования исследуемой экосистемы.

Технический результата изобретения достигается тем, что способ определения экотоксикантов в атмосфере промышленных зон содержит сбор образцов лишайника «Hypogymnia physodes» с деревьев, растущих в промышленной зоне, образцов лишайника с деревьев, растущих в фоновой зоне, не имеющей промышленных выбросов экотоксикантов, моделирование процесса взаимодействия лишайника фоновой зоны с промышленными выбросами путем выдержки образцов в эксикаторе с определенным содержанием экотоксиканта в газовой фазе, получение стандартных образцов лишайника с характерными изменениями его структуры в зависимости от концентрации экотоксиканта в газовой фазе, сушку стандартов и образцов, собранных в промышленной зоне, при температуре 25÷35°С до постоянного веса, измельчение в вибромельнице, прессование в смеси с бромидом калия при давлении 2,6·106 Па с получением таблеток, регистрацию ИК-спектров стандартов, фиксацию в спектрах значений характеристических частот, соответствующих соединениям, образовавшимся в слоевище лишайника фоновой зоны при выдержке в эксикаторе с определенным содержанием экотоксиканта в газовой фазе, фиксацию ИК-спектров образцов промышленной зоны, совмещение их с ИК-спектрами стандартов до совпадения экстремумов характеристических частот, определение концентрации экотоксиканта в атмосфере промышленной зоны как совпадающей с его концентрацией в газовой фазе при моделировании процесса взаимодействия лишайника фоновой зоны с промышленными выбросами.

Изобретение поясняется графическими материалами Фиг.1÷5 и таблицами 1÷3.

Фиг.1 - ИК-спектры образцов Н.physodes, собранного в фоновой зоне (1) и выдержанного в парах азотной кислоты (2).

Фиг.2 - ИК-спектры образцов Н.Physodes; 1 - собран в фоновой зоне; 2-4 - образцы экспонированы в 3%-ной серной кислоте в течение одной недели (2), двух недель (3) и трех недель (4); 5-6 - образцы экспонированы в 6%-ной серной кислоте в течение одной недели (5), двух недель (6) и трех недель (7).

Фиг.3 - ИК-спектры образцов Н.Physodes, собранного в фоновой зоне (1) и выдержанного в парах концентрированной серной кислоты (2).

Фиг.4 - ИК-спектры образцов Н.Physodes из фоновой зоны (1) и собранные в промышленных зонах с различным уровнем загрязнения: относительно слабое загрязнение (2), загрязнение среднего уровня (3), сильное загрязнение (4).

Фиг.5 - ИК-спектры образцов Н.Physodes (а, б, в), собранного в промышленных зонах с высоким уровнем загрязнения атмосферы (1), и образцов, собранных в фоновой зоне и выдержанных в парах 6%-ной (2) и 3%-ной (3) серной кислоты, а также в парах 32%-ной азотной кислоты (4).

Таблица 1 - значения D A/D2925 образцов Н.Physodes, собранных в фоновой зоне и обработанных азотной кислотой, где

* - изменение цвета (пожелтение); способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 - полное ослизнение слоевища; способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 - полная деструкцией слоевища лишайника.

Таблица 2 - значения DA/D2925 образцов Н.Physodes, собранных в фоновой зоне и обработанных серной кислотой.

Таблица 3 - общая характеристика используемых образцов лишайника (Hypogymnia physodes). IP* - индекс полеотолерантности Трасса. (Абсолютная величина этого индекса отражает степень загрязнения/чистоты исследуемой территории).

Таблица 4. Значения D v/D2925 образцов Н.Physodes, собранных в промышленной зоне, атмосфера которой содержит выбросы серосодержащих загрязнений, где

* - изменение цвета (пожелтение) слоевища лишайника; «-» - отсутствие полос поглощения в ИК-спектрах.

Сущность заявляемого изобретения заключается в следующем.

Изменения основных компонентов окружающей природной среды, приведшие к возникновению глобальных экологических проблем, определили появление на свет широкого спектра методов их оценки. Все многообразие наземных методов условно можно разделить на 2 группы: физико-химические и биоиндикационные.

Биоиндикация - оценка экологических условий (чаще загрязнение среды человеком) по организмам-индикаторам или целым сообществам. В зависимости от вида биоиндикатора выделяют альгоиндикацию, дендроиндикацию, лихеноиндикацию.

Преимущество биоиндикации - не требует значительных затрат труда, сложного и дорогостоящего оборудования, трудоемких методик, что под силу только специальным лабораториям, позволяет определить общий уровень загрязнения и т.д.

Недостатком биоиндикации является невозможность определить характер загрязнителя, установить его концентрацию в многокомпонентной смеси загрязняющих веществ, поскольку биоиндикатор реагирует сразу на весь комплекс веществ.

Физико-химические методы - эта группа методов, позволяющая получить количественные и качественные характеристики фактора. Качественный анализ предшествует количественному, поскольку выбор метода количественного определения зависит от данных качественного анализа.

Известны гравиметрический, титрометрический, колориметрический методы. К методам, требующим дополнительной специальной подготовки, относят радиоспектроскопию (ЯМР-спектроскопию и ЭПР), оптическую спектроскопию (УФ-, видимый и ИК диапазон), спектроскопию комбинационного рассеяния или Раман-спектроскопию, атомно-адсорбционную спектроскопию. Каждый из методов при оценке состояния различных компонентов среды имеет свои достоинства и недостатки.

Атомно-абсорбционная спектроскопия обычно используется для определения неорганического состава пищевых продуктов, следов выстрела, следов металлизации на объектах окружающей среды, количественного определения примесного состава металлов, сплавов, руд и рудных концентратов металлов. Не так давно вместо атомно-абсорбционной спектроскопии стали использовать плазменную эмиссионную спектроскопию, что позволило добиться одновременного определения многих элементов в малом объеме образца. Соединение атомно-абсорбционной спектроскопии и рентгеновской флуоресцентной спектроскопии дало возможность определять не только металлы (концентрацию никеля, железа, меди, цинка и свинца в слоевище лишайника), но и некоторые неметаллы.

Масс-спектрометрия позволяет провести анализ микроэлементного состава объектов окружающей среды, определить органические загрязнители и токсичные элементы в биологических объектах, установить строение вещества по характеру образующихся фрагментов, провести количественный анализ смесей, включая определение микропримесей, определить степень чистоты вещества. Соединение хроматографических методов с масс-спектрометрией привело к возможности определения хлорированных углеводородов (хлорсодержащие пестициды, полихлорбифенилы), бенз(а)пирена, полиароматических углеводородов и других летучих и нелетучих органических примесей в воздухе, к идентификации отравляющих, токсических веществ и нефтепродуктов по составу, при проведении экспертизы пищевых продуктов. Объединение методов масс-спектрометрии с плазменной эмиссионной спектроскопией существенно увеличило чувствительность при определении.

Преимущества метода ЯМР в том, что он дает больше информации о строении молекул некоторых классов растворимых органических веществ без спектров сравнения их стандартов.

УФ спектроскопия находит себе применение не только в лабораторной практике, но и в химической и пищевой промышленности, например для определения стирола в его смесях с дивинилбензолом (ГОСТ 10003-67), определение каратиноидов, бенз(а)пирена и т.д. УФ используют для определения ионов (Al 3+, Ba2+, NH4способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 +, Fen+, Cd2+; Mn n+; Cun+; Mon+; Asn+; Nin+; Pbn+; Crn+; Zn2+ ; F; NO3способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 -; NO2способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 -; CN-; BO3способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 3-; PO4способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 3-; SO4способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 2-; PO4способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 3-; SiO2·xH2O) в питьевой воде, сточных водах, донных отложениях, почвах, а также органических примесей в воздухе рабочей зоны и атмосферном воздухе.

С помощью метода ИК спектроскопии могут быть исследованы как органические, так и неорганические соединения, независимо от того, находятся они в газообразном или парообразном состоянии, являются ли жидкостями или твердыми соединениями. Возможности ИК спектроскопии с Фурье-преобразованием позволили с успехом применить ее для газового анализа, и, в первую очередь, для анализа атмосферы, как Земли, так и других планет. Методы Фурье-ИК спектроскопии были использованы для астрофизических исследований. По ИК спектрам планет Марса, Венеры, Юпитера был определен состав их атмосферы, были изучены также спектры некоторых звезд. Фурье-ИК спектроскопию используют также и при решении спорных вопросов хемосистематики.

Лазерная раман-спектроскопия имеет ряд преимуществ перед ИК спектроскопией, так как позволяет получить сигнал, при работе с влажным образцом, что дает возможность работать в полевых условиях и со свежими образцами.

Недостатки, связанные с использованием физико-химических методов, определены прежде всего техническими ограничениями. Широкому использованию физико-химических методов при оценке состояния окружающей среды препятствует их высокая стоимость, а для работы на сложных приборах требуются высококвалифицированные специалисты.

Какой бы не была современная аппаратура для контроля загрязнения и определения вредных примесей в окружающей среде, она не может сравниться со сложно устроенным «живым прибором» (биоиндикатор). Однако если у «живых приборов» есть серьезный недостаток - они не могут установить концентрацию какого-либо вещества в многокомпонентной среде, то физико-химические методы дают количественные и качественные характеристики фактора, но не позволяют оценить их биологическое действие.

В заявляемом способе используется совместное использование биоиндикатора с физико-химическим контролем состояния окружающей среды - эпифитных лишайников в качестве биоиндикатора с методом ИК спектроскопии. Возможность идентификации химического состава соединений с помощью ИК спектроскопии определяет интерес к использованию этого метода в лихеноиндикации. Известно, что метод лихеноиндикации имеет ряд недостатков. Например, результаты лихеноиндикационных исследований не дают прямых сведений о типе и концентрации загрязнителей, остается нерешенной проблема сравнения индикационной способности одних и тех же видов в различных макроэкологических средах (регионах), сравнения действий различных загрязнителей на жизнедеятельность лишайников.

Диоксид азота

Условия эксперимента: в лабораторных условиях осуществляли моделирование различного уровня загрязнения воздуха окислами азота. Влажные образцы Н.physodes, собранные в фоновой зоне, помещали в эксикатор над парами диоксида азота. Для этого в эксикатор наливали 20 мл азотной кислоты (HNO 3) различной концентрации (2, 4, 8, 16, 32 и 65%) и нагревали до температуры +36°С в сушильном шкафу каждый день в течение трех часов на протяжении всего эксперимента. При нагревании и под действием света кислота разлагается с выделением диоксида азота, в котором образцы Н.physodes выдерживали в течение 1÷3 недель:

способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357

Для записи ИК спектров образцов готовили таблетки с бромидом калия (KBr). Для этого 3 мг образца лишайника, высушенного при температуре 25÷35°С, измельчали в вибромельнице, смешивали с порошком KBr (0,7 г). Затем смесь прессовали под давлением 2,6·106 Па в специальной пресс-форме при комнатной температуре с вакуумной откачкой и получали прозрачную таблетку. ИК спектры образцов записывали на Фурье-ИК спектрометре «Equinox 55» фирмы «Bruker» (Германия).

Для проведения количественного спектрального анализа использовали программу OPUS-NT, которая позволяет рассчитать оптическую плотность анализируемой полосы (DA) по формуле:

D=kcd,

где: D - оптическая плотность (поглощение); с - концентрация поглощающих центров (осцилляторов или колеблющихся химических группировок); d - толщина образца (длина пути, пройденного светом); k - коэффициент поглощения данного осциллятора.

С целью исключения влияния толщины на количественные результаты оптическую плотность анализируемой полосы поглощения (DA) относили к оптической плотности полосы стандарта (DC):DA/DC. В качестве полосы стандарта была выбрана полоса на частоте 2925 см-1, характеризующая валентные колебания СН2 -группы в образце.

По зависимости DA /DC(DA/D2925) делали представление об относительной концентрации исследуемых химических групп и их изменениях в процессе реакции.

Результаты эксперимента:

- о присутствии в приземном слое атмосферы диоксида азота можно судить по появлению в ИК спектрах образцов Н.physodes изменений на частоте 1381 см-1, связанных с образованием соединения из группы типа алкилнитратов (симметричные валентные колебания группы -O-NO2) (Фиг.1);

- о содержании диоксида азота в атмосфере можно судить по величине D1381/D2925 (Табл.1);

- предельно-допустимая концентрация паров азотной кислоты для лишайникового слоевища - 16%.

Превышение порогового значения концентрации паров азотной кислоты вызывает у лишайника стрессовое состояние, приводящее к глубокому необратимому нарушению физиологии и структуры;

- действие высоких концентрации азотной кислоты (32 и 65%) не приводит к взаимодействию накопленного поллютанта с органическими компонентами лишайника.

Диоксид серы

В лабораторных условиях моделировали загрязнение воздуха диоксидом серы.

Условия эксперимента: влажные образцы Н.physodes, собранные в фоновой зоне, помещали в эксикаторы над парами диоксида серы. Для этого предварительно в эксикатор наливали 20 мл серной кислоты (H2SO 4) различной концентрации (3, 6, 12, 24, 49 и 98%), опускали медную проволоку и нагревали до +40°С в сушильном шкафу каждый день в течение пяти часов на протяжении всего времени эксперимента:

способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 .

Для записи ИК спектров образцов готовили таблетки с бромидом калия (KBr). ИК спектры образцов записывали на Фурье-ИК спектрометре «Equinox 55» фирмы «Bruker» (Германия). С помощью программы OPUS NT рассчитывали оптическую плотность анализируемой полосы и относили ее впоследствии к полосе стандарта (DA/D2925).

Результаты эксперимента:

- о присутствии в атмосфере диоксида серы свидетельствует появление в ИК спектрах образцов Н.physodes изменений, связанных с образованием нескольких типов соединений (Фиг.2, 3):

- сульфокислоты - R-SO2 -OH (1230, 1056, 851 и 581 см-1);

- сульфоны - R-SO2R (1313, 782, 666 и 518 см-1 );

- сульфаты - (RO)2SO2 (1424, 873 и 711 см-1);

- на присутствие в атмосфере диоксида серы содержанием, эквивалентным 3% серной кислоте, указывает появление ИК полос поглощения в образце лишайника, связанных с образованием сульфокислот - R-SO2-OH;

- на присутствие в атмосфере диоксида серы содержанием, эквивалентным 6% серной кислоте, указывает появление ИК полос поглощения в образце лишайника, связанных с образованием сульфонов - R-SO2R;

- на появление залповых, чаще аварийных выбросов сернистого газа в атмосферу (эквивалентных по содержанию 98% серной кислоте) указывают полосы поглощения, связанные с образованием сульфатов - (RO)2SO2 ;

- кратковременное воздействие концентрированной серной кислоты на Н.physodes не вызывает повреждения на уровне клетки в течение 6÷7 суток - побледнение слоевища, вызванное потерей хлорофилла или омертвление (ослизнение);

- действие паров 12, 24 и 49% кислоты на лишайник не выявило никаких изменений в ИК спектрах образцов;

- о длительности хронического воздействия низких концентраций сернистого газа (3 и 6%) указывает деструкция химического состава лишайника Н.physodes и изменения на частотах 1619 см-1 (способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 (C=O)) (Табл.2);

- воздействие паров серной кислоты на лишайник, в отличие от азотной, показывает большую зависимость деструктивного эффекта от времени экспозиции, в меньшей степени от концентрации данного поллютанта.

Для демонстрации практической ценности ИК спектральных исследований химического состава лишайника, испытавшего влияния экотоксикантов, при оценке загрязнения атмосферы был осуществлен сбор лишайников в экологически чистой (загородной) зоне, а также в промышленных зонах города с разным уровнем загрязнения атмосферы (Табл.3). Спектры данных образцов (1÷4) по стандартной методике были записаны на ИК спектрометре. Для сравнительного анализа выбрали ИК спектры образцов 5÷7 (Табл. 3), выдержанных над парами 3 и 6% серной кислоты в течение трех недель, а также 16% азотной кислоты в течение одной недели.

Примеры выполнения способа

Пример 1

В ИК спектрах образцов H.physodes, собранных в промышленных зонах города с разным уровнем загрязнения, обнаружены изменения на частотах 1313, 782, 666 и 514 см-1 (Фиг.4). Данные изменения связанны с образованием сульфонов (-R-SO2R) в лишайнике, что указывает на присутствие в воздухе атмосферы сернистого газа. Сопоставление ИК спектров образцов из РЗ и ИК спектров образцов, выдержанных в парах 6%-ной серной кислоты в течение 3-х недель, показало их полное соответствие (Фиг.5а). Сопоставление ИК спектров лишайников (2÷4) с ИК спектром лишайника, выдержанного в парах 3% серной кислоты (5), не выявило изменений, связанных с образованием сульфокислоты: (R-SO2--OH) (Фиг.5б).

Пример 2

Сравнение ИК спектров лишайников (2÷4) с ИК спектром лишайника, выдержанного в парах 16% азотной кислоты в течение одной недели (7) выявило следы загрязнения атмосферы окислами азота (Фиг.5в). В спектрах лишайников (2÷4) обнаружены изменения на частоте 1381 см-1, связанные с образованием в лишайниковом слоевище алкилнитратов.

Расчет Dv/D2925 для полос поглощения 1313, 781, 666, 517 см-1 лишайников из промышленных зон города показал, что значительное содержание сульфонов присутствует в образце из промышленной зоны, располагающейся в зоне сильного атмосферного загрязнения (Табл. 3), а самое низкое - из зоны относительно слабого загрязнения атмосферы. По-видимому присутствие в приземном слое атмосферы сернистого газа в зоне сильного загрязнения атмосферы является более длительным. Косвенным свидетельством токсичности сернистого газа для лишайникового слоевища служит увеличение интенсивности полосы поглощения на частоте 1619 см -1 (Табл. 4), которое отмечено в ИК спектрах лишайников (2÷4). Увеличение значения D1619/D2925 указывает о начале деструктивных процессов в лишайниковом слоевище, при отсутствии морфологических изменений. Степень деструкции в лишайнике (4) из зоны сильного загрязнения атмосферы самая высокая.

Количественный спектральный анализ показывает, что влияние загрязнения атмосферы оксидами азота в исследуемых промышленных зонах города не очень существенно.

Доминирующим загрязнителем атмосферы является диоксид серы. Химическая и энергетическая отрасли промышленности являются основным источником загрязнения атмосферы, вредные вещества распространяются от них с воздушными массами благодаря преобладанию южных и юго-западных ветров в городе. Промышленная зона, располагающаяся в зоне сильного загрязнения атмосферы, испытывает наибольшее влияние от промышленности, чем промышленные зоны, находящиеся в зонах среднего и относительно слабого уровня загрязнения воздуха, поскольку территориально располагается ближе к нему. Прилегающие к данной промышленной зоне крупные магистрали с интенсивным движением автотранспорта являются дополнительным источником двуокиси серы, которая образуется в процессе окисления резиновой пыли от автомобильных шин.

Наряду с вышеописанными изменениями в ИК спектрах лишайников (2÷4) отмечены также изменения в содержании белков - Амид I, Амид II и Амид III. Наиболее существенными являются изменения на частоте 1654 см-1. Величина отношения D1654/D2925 в ИК спектрах лишайников (2÷4) выше фонового значения в два раза и изменяется от 1.90 до 2.06 соответственно.

Количественные спектральные исследования химического состава лишайника Н.physodes, собранного в различных промышленных зонах города, согласуются с данными лихеноиндикационного анализа (Табл.3). Содержание экотоксикантов в образце из промышленных зон, где отмечен самый высокий индекс полеотолерантности (IP=7,1), также самое высокое. Для образца из промышленных зон с сильным уровнем загрязнения атмосферы, кроме того, характерна высокая степень деструкции лишайникового слоевища. По мере удаления от источников загрязнения действие данных экотоксикантов ослабевает. Содержание сульфонов и алкилнитратов существенно снижается в лишайнике для промышленных зон среднего и относительно слабого загрязнения атмосферы.

Алгоритм применения на практике

1. Осуществляется сбор образцов Hypogymnia physodes с деревьев (на высоте 1,2÷1,5 м от земли), растущих в промышленной зоне.

2. Осуществляется запись ИК спектров. Для записи ИК спектров образцов используется метод приготовления таблетки с бромидом калия (KBr). Для этого 3 мг образца высушенного лишайника при температуре 25-35°, тщательно измельчается в вибромельнице, смешивается с порошком KBr (0,7 г). После смесь подвергают прессованию под давлением 20 атм. в специальной пресс-форме при комнатной температуре в вакууме для получения прозрачной таблетки. ИК спектры образцов записываются на спектрометре.

3. Анализ полученных ИК спектров:

- совмещаются спектры образцов лишайников из загрязненной промышленной зоны с ИК спектром фоновой (чистой) зоны;

- устанавливаются полосы поглощения, связанные с накоплением экотоксикантов - диоксидов азота и серы.

Количественное определение диоксида серы:

- если установлены ИК полосы поглощения в образце лишайника на частотах 1313, 782, 666 и 518 см-1, связанных с образованием сульфонов - R-SO2R, то в атмосфере присутствует диоксид серы с содержанием, эквивалентным 6% серной кислоте;

- если обнаружены ИК полосы поглощения в образце лишайника на частотах 1230, 1056, 851 и 581 см-1, связанных с образованием сульфокислоты

- R-SO2-OH, то в атмосфере присутствует диоксид серы, содержанием эквивалентным 3% серной кислоте;

- если отмечены ИК полосы поглощения в образце лишайника на частотах 1424, 873 и 711 см-1 , связанных с образованием сульфатов - (RO)2SO 2, то в атмосфере присутствует диоксид серы с содержанием, эквивалентным 98% серной кислоте;

- если отмечено ИК полоса поглощения на частоте 1619 см-1 (способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 (C=O)), то лишайник испытывает длительное хроническое воздействие низких концентраций сернистого газа (3 и 6%), ответом на воздействие которого является деструкция химического состава лишайника Н.physodes (табл.2).

Количественное определение диоксида азота:

- если отмечена ИК полоса поглощения в образце лишайника на частоте 1381 см -1, связанной с образованием в лишайниковом слоевище алкилнитратов, то в атмосфере присутствует диоксид азота;

- определяется относительная концентрация диоксида азота. Для этого рассчитывается оптическая плотность анализируемой полосы (D1381) 2 (2Расчет оптической плотности в программе OPUS NT (см. приложении 2)). С целью исключения влияния толщины образца на количественные результаты расчетов оптическую плотность анализируемой полосы поглощения (D1381) относят к оптической плотности полосы стандарта (D2925) 3 (3Полоса на частоте 2925 см-1, характеризуют валентные колебания СН2-группы в образце. Эта полоса является структурно-нечувствительной.):D1381 /D2925. Используя данные Табл.1, определяется содержание загрязнителя.

Предлагаемый способа позволяет:

- зафиксировать в атмосфере промышленных зон диоксид азота и диоксид серы;

- определить относительное содержание экотоксикантов в воздухе;

- выяснить доминирующий загрязнитель атмосферы;

- оценить влияние загрязнения атмосферы на живые системы:

- зафиксировать основные тенденции изменения химического состава в слоевище, которые могут быть вызваны накоплением экотоксикантов и их взаимодействием с органическими компонентами лишайника,

- зафиксировать при слабом уровне загрязнения атмосферы сернистым газом и диоксидом азота увеличение содержания белков в лишайнике,

- зафиксировать деструкцию химического состава, когда нет проявления внешних видимых морфологических изменений, - побледнения, пожелтения и т.д.

- подтвердить, что зависимость деструкции от времени воздействия неблагоприятного фактора или его концентрации определяется типом загрязнения.

- подтвердить, что процесс образования в лишайнике сульфонов (R-SO2R) и сульфокислот (R-SO 2--OH) сопряжено с деструкцией химического состава;

- разработать методы ранней диагностики трансформации природных систем, находящихся под влиянием техногенной нагрузки;

- прогнозировать состояние живых систем.

Таблица 1
Волновое число, см-1 Время экспонирования, недели Концентрация азотной кислоты, % Фон
2 4 816 3265
1381 1 1,101,30 2,103,10 2,501,43* -
2 0,90 0,680,59 1,503,60* способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357
31,13 1,101,31 5,20*способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357

Таблица 2
Волновое число, см-1 Время экспонирования, недели Концентрация серной кислоты, % Фон
3 6 1224 4998
1 23 45 67 89
1654 1 0,900,94 1,051,18 1,00- 0,88
2 0,67* 1,031,05 1,050,89 0,95
3 0,71* 2,240,82 1,051,02 0,96
16191 0,900,91 1,231,18 1,001,48 0,92
2 0,64* 1,050,97 1,030,82 0,94
3 0,57* 3,100,76 1,131,13 1,13
15421 -- 0,170,36 -- -
2 - -- -- 0,22
3 - -0,15 -- -
1424 1 -- -- -2,8 -
13131 -0,71 0,710,78 0,750,80 0,61
2 - 0,89*0,80 0,820,66 0,78
3 - 1,93*- 0,760,72 0,81
1266 1 0,080,82 0,800,81 0,780,96 0,71
способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 2 -0,84* 0,780,74 0,760,78
способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 3 -0,71* 0,870,79 0,790,74
1230 2 1,16*- -- -- способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357
31,11* -0,85 -- 0,71
10562 1,54*- -- -- -
3 2,42* -1,88 -- -способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357
8731 -- -- -0,76 -
2 0,04* -- -- -
3 0,17* -- -- -

12 34 56 78 9
8511 -- -- 0,03- способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357
20,14* -способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 0,02 -
30,17* способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 - способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 - -
7801 0,050,05 0,170,09 0,090,16 0,08
2 - 0,12*0,12 0,120,04 0,11
3 способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 0,75 0,02 0,100,09 0,11
711 1 -- -- -0,24 -
666 3 способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 0,41* - -- --
581 1 способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 0,23 - -- --
2 0,54*0,29* - -- -
3 0,42* 0,34*0,39 -- -
5181 -- -- -- способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357
2- 0,23*- -- -
3 - 0,53*- -- -

Таблица 3
№ лишайника ХарактеристикаУсловия эксперимента
1Собран в зоне слабого загрязнения атмосферы (фоновой) (IP*=3,2) Источники загрязнения атмосферы не выявлены
2Собран в промышленной зоне, располагающейся в зоне относительно слабого загрязнения атмосферы (IP=4,7) Источники загрязнения: промышленные предприятия химической и энергетической отрасли, автотранспорт. Промышленная зона находится на берегу реки.
3Собран в промышленной зоне, располагающейся в зоне среднего загрязнения атмосферы (IP=6,8) Источники загрязнения: промышленные предприятия химической и энергетической отрасли; другие объекты, загрязняющие среду: несанкционированные бытовые и строительные свалки.
4Собран в промышленной зоне, располагающейся в зоне сильного загрязнения атмосферы (IP=7,1) Источники загрязнения: промышленные предприятия химической и энергетической отрасли, автотранспорт: крупные внутренние магистрали с интенсивным движением автотранспорта. РЗ располагается на берегу искусственного водоема
5 Выдержан в парах 3% серной кислоты (H2SO4 ) в течение 3 недель Образец помещали в эксикатор, где предварительно наливали 20 мл 3% (H2SO4), опускали медную проволоку и нагревали на слабом пламени: способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357
6Выдержан в парах 6% H2SO4 в течение 3 недель. Образец помещали в эксикатор, где предварительно наливали 20 мл 6% H2SO4, опускали медную проволоку и нагрели на слабом пламени.
7Выдержан в парах 16% азотной кислоты в течение 1 недели Образец помещали в эксикатор, куда предварительно наливали 20 мл 16% азотной кислоты и нагревали до температуры 86°С. При нагревании и под действием света кислота разлагается с выделением диоксида азота: способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357

Таблица 4
№ лишайника способ определения экотоксикантов в атмосфере промышленных зон, патент № 2430357 , см-1
16541619 15421381 13131266 1230879 781666 517
1 0.88 0.92- -0.63 0.71- 0.040.08 --
2 1.902.17 -0.80 1.360.75 -- 0.560.40 0.49
3 2.00 2.260.22 0.831.45 0.86- -0.56 0.430.52
4 2.062.60 0.470.85 1.680.87 -0.13 0.620.53 0.56
5 0.71* 0.57*- -- -1.11* -- --
6 2.24*3.10* - -1.93* 0.71*- -0.76* 0.42*0.54*
7 1.44- 0.523.10 1.001.01 -0.15 0.15- -

Класс G01N33/00 Исследование или анализ материалов особыми способами, не отнесенными к группам  1/00

способ технологической оценки технических сортов винограда -  патент 2529839 (27.09.2014)
способ определения подлинности и количественного содержания бензэтония хлорида в лекарственных препаратах -  патент 2529814 (27.09.2014)
раковый маркер и терапевтическая мишень -  патент 2529797 (27.09.2014)
способ диагностики поражения вегетативных парасимпатических узлов головы вирусной этиологии -  патент 2529795 (27.09.2014)
способ диагностики поражения вегетативных парасимпатических узлов головы вирусной этиологии -  патент 2529794 (27.09.2014)
способ оценки острой соматической боли -  патент 2529793 (27.09.2014)
способ оценки эффективности противогерпетического действия фотодинамического воздействия на вирус простого герпеса (впг) in vitro -  патент 2529792 (27.09.2014)
способ выбора лечения акне у женщин -  патент 2529789 (27.09.2014)
способ прогнозирования самопроизвольного выкидыша -  патент 2529788 (27.09.2014)
технология определения анеуплоидии методом секвенирования -  патент 2529784 (27.09.2014)

Класс A01G15/00 Способы и устройства для изменения атмосферных условий

Наверх