оптический нанокоммутатор
Классы МПК: | G02F1/295 в оптических волноводах B82Y10/00 Нано-технология для обработки, хранения или передачи информации, например квантовые вычисления или логические схемы на одиночном электроне |
Автор(ы): | Донченко Анатолий Анатольевич (RU), Аллес Михаил Александрович (RU), Соколов Сергей Викторович (RU), Донченко Максим Анатольевич (RU) |
Патентообладатель(и): | Донченко Анатолий Анатольевич (RU), Аллес Михаил Александрович (RU), Соколов Сергей Викторович (RU), Донченко Максим Анатольевич (RU) |
Приоритеты: |
подача заявки:
2010-04-27 публикация патента:
27.10.2011 |
Изобретение относится к оптическим наноустройствам переключения и может быть использовано в волоконно-оптических системах передачи информации для коммутации каналов передачи информации. Согласно изобретению устройство содержит группу n адресных оптических нановолноводов, группу n+1 информационных оптических нановолноводов, n пар телескопических нанотрубок, оптический нановолноводный n-выходной разветвитель, источник постоянного излучения и n оптических нановолноводных Y-объединителей. Техническим результатом является расширение функциональных возможностей устройства за счет обеспечения управляемой коммутации информационных оптических потоков, поступающих из n+1 каналов передачи информации, на выход устройства при его реализации в наноразмерном исполнении. 1 ил.
Формула изобретения
Оптический нанокоммутатор, содержащий оптические нановолноводы, телескопические нанотрубки, источник постоянного сигнала, отличающийся тем, что в него введены оптический нановолноводный n-выходной разветвитель, n оптических нановолноводных Y-объединителей, i-м адресным входом оптического нанокоммутатора является вход i-го оптического нановолновода из группы n адресных оптических нановолноводов (i=1,2, ,n), i-м информационным входом оптического нанокоммутатора является вход i-го оптического нановолновода из группы n+1 информационных оптических нановолноводов (i=0,1, ,n+1), выход i-го оптического нановолновода из группы n+1 информационных оптических нановолноводов подключен к первому входу (i+1)-го оптического нановолноводного Y-объединителя (i=0,1, ,n-1), выход n-го оптического нановолновода из группы n+1 информационных оптических нановолноводов подключен ко второму входу n-го оптического нановолноводного Y-объединителя, i-я пара телескопических нанотрубок расположена между выходом i-го оптического нановолновода из группы n адресных оптических нановолноводов и i-м выходом оптического нановолноводного n-выходного разветвителя (i=1,2, ,n) по оси распространения их выходных оптических сигналов таким образом, что в крайнем левом положении внутренняя нанотрубка n-й пары телескопических нанотрубок разрывает оптические связи между выходом n-го оптического нановолновода из группы n+1 информационных оптических нановолноводов и вторым входом n-го оптического нановолноводного Y-объединителя, при этом присутствует оптическая связь между выходом (n-1)-го оптического нановолновода из группы n+1 информационных оптических нановолноводов и первым входом n-го оптического нановолноводного Y-объединителя, а внутренняя нанотрубка i-й пары телескопических нанотрубок в крайнем левом положении разрывает оптические связи между выходом (i+1)-го оптического нановолноводного Y-объединителя и вторым входом i-го оптического нановолноводного Y-объединителя, при этом присутствует оптическая связь между выходом (i-1)-го оптического нановолновода из группы n+1 информационных оптических нановолноводов и первым входом i-го оптического нановолноводного Y-объединителя (i=1,2, ,n-1), выход источника излучения подключен ко входу оптического нановолноводного n-выходного разветвителя, выход первого оптического нановолноводного Y-объединителя является выходом устройства.
Описание изобретения к патенту
Изобретение относится к оптическим наноустройствам переключения и может быть использовано в волоконно-оптических системах передачи (ВОСП) информации для коммутации каналов передачи информации.
Известен оптический коммутатор - фотонный коммутатор на основе нелинейного оптического зеркала, предназначенный для коммутации оптического потока в ВОСП [Маккавеев В. Фотонные коммутаторы / В. Маккавеев // Компоненты и технологии. - 2006. - № 2. - С.142-146, страница 144, рисунок 3] и содержащий нелинейный интерферометр Саньяка, оптические волноводы.
Существенный признак аналога, общий с заявляемым устройством, - оптические волноводы.
Недостатком данного аналога является сложность устройства, определяемая необходимостью использования интерферометра Саньяка, и невозможность наноразмерного исполнения.
Известен также оптический коммутатор - фотонный коммутатор на основе электрооптического кристалла теллура кадмия, предназначенный для коммутации оптического потока в ВОСП [Маккавеев В. Фотонные коммутаторы / В.Маккавеев // Компоненты и технологии. - 2006. - № 2. - С.142-146, страница 144, рисунок 4] и содержащий полупроводниковый оптический кристалл теллура кадмия, диэлектрический слой, металлические электроды, источник внешнего электрического напряжения, оптический поляризатор, оптический анализатор, микрообъективы, оптические волноводы.
Существенный признак аналога, общий с заявляемым устройством, - оптические волноводы.
Недостатками данного аналога являются сложность конструкции устройства и невозможность наноразмерного исполнения.
Наиболее близким по техническому исполнению к заявленному устройству является оптический нанокомпаратор [патент № 2357275, РФ. Оптический нанокомпаратор / Соколов С.В., Каменский В.В. 2009 г. БИ № 15], содержащий входные и выходные оптические нановолноводы, телескопические нанотрубки, источник постоянного сигнала.
Существенные признаки прототипа, общие с заявляемым устройством, - входные оптические нановолноводы, телескопические нанотрубки, источник постоянного сигнала.
Недостатком прототипа является невозможность управляемой коммутации каналов передачи информации в ВОСП.
Задачами изобретения являются создание оптического нанокоммутатора, позволяющего выполнять управляемое переключение информационных оптических потоков, поступающих из n+1 каналов передачи информации, на выход устройства, а также упрощение конструкции устройства и реализация его в наноразмерном исполнении.
Заявленное устройство строится на основе оптических нановолноводов, варианты технического исполнения которых описаны в [Оптика наноструктур / Под редакцией А.В.Федорова. - СПб. «Недра», 2005 г.; Krenn J.R., Dereux A., Weeber J.C. et al. Squeezing the optical near-field zone by plasmon coupling of metal nanoparticles. Physical Review Letters, 1999, 82, 12, 2590], и телескопических нанотрубок, под которыми понимается пара вложенных одна в другую нанотрубок [Multiwalled Carbon Nanotubes as Gigahertz Oscillators / Quanshui Zheng, Qing Jiang // Phvs. Rev. Lett. 88. 045503, 28 January, 2002].
Техническим результатом является расширение возможностей устройства за счет обеспечения управляемой коммутации информационных оптических потоков, поступающих из n+1 каналов передачи информации, на выход устройства при реализации последнего в наноразмерном исполнении.
Оптический нанокоммутатор - оптическое переключательное наноустройство, предназначенное для коммутации информационных оптических потоков, поступающих из n+1 каналов передачи информации на выход устройства.
Сущность изобретения состоит в том, что оптический нанокоммутатор содержит группу n адресных оптических нановолноводов, группу n+1 информационных оптических нановолноводов, n пар телескопических нанотрубок, оптический нановолноводный n-выходной разветвитель, источник постоянного излучения, n оптических нановолноводных Y-объединителей, i-м адресным входом оптического нанокоммутатора является вход i-го оптического нановолновода из группы n адресных оптических нановолноводов (i=1,2, ,n), i-м информационным входом оптического нанокоммутатора является вход i-го оптического нановолновода из группы n+1 информационных оптических нановолноводов (i=0,1, ,n+1), выход i-го оптического нановолновода из группы n+1 информационных оптических нановолноводов подключен к первому входу (i+1)-го оптического нановолноводного Y-объединителя (i=0,1, ,n-1), выход n-го оптического нановолновода из группы n+1 информационных оптических нановолноводов подключен ко второму входу n-го оптического нановолноводного Y-объединителя, i-ая пара телескопических нанотрубок расположена между выходом i-го оптического нановолновода из группы n адресных оптических нановолноводов и i-м выходом оптического нановолноводного n-выходного разветвителя (i=1,2, ,n) по оси распространения их выходных оптических сигналов таким образом, что в крайнем левом положении внутренняя нанотрубка n-й пары телескопических нанотрубок разрывает оптические связи между выходом n-го оптического нановолновода из группы n+1 информационных оптических нановолноводов и вторым входом n-го оптического нановолноводного Y-объединителя, при этом присутствует оптическая связь между выходом (n-1)-го оптического нановолновода из группы n+1 информационных оптических нановолноводов и первым входом n-го оптического нановолноводного Y-объединителя, а внутренняя нанотрубка i-й пары телескопических нанотрубок в крайнем левом положении разрывает оптические связи между выходом (i+1)-го оптического нановолноводного Y-объединителя и вторым входом i-го оптического нановолноводного Y-объединителя, при этом присутствует оптическая связь между выходом (i-1)-го оптического нановолновода из группы n+1 информационных оптических нановолноводов и первым входом i-го оптического нановолноводного Y-объединителя (i=1,2, ,n-1), выход источника излучения подключен ко входу оптического нановолноводного n-выходного разветвителя, выход первого оптического нановолноводного Y-объединителя является выходом устройства.
Функциональная схема оптического нанокоммутатора показана на чертеже.
Оптический нанокоммутатор содержит:
- 11, 12, , 1n - группу n адресных оптических нановолноводов;
- 20, 21, , 2n - группу n+1 информационных оптических нановолноводов;
- 311, 312 , 321, 322, , 3n1, 3n2 - n пар телескопических нанотрубок;
- 4 - оптический нановолноводный n-выходной разветвитель;
- 5 - источник постоянного излучения с интенсивностью k×n усл(овных) ед(иниц);
- 61, 62, , 6n - n оптических нановолноводных Y-объединителей.
Оптический нанокоммутатор имеет n+1 информационных входов и n адресных входов, где i-м информационным входом оптического нанокоммутатора является вход i-го оптического нановолновода 2i из группы n+1 информационных оптических нановолноводов 20, 21, , 2n (i=0,1, ,n), a i-м адресным входом оптического нанокоммутатора является вход 1-го оптического нановолновода 1i из группы n адресных оптических нановолноводов 11, 1 2, , 1n (i=1,2, ,n).
Выход i-го оптического нановолновода 2i из группы n+1 информационных оптических нановолноводов 20, 21, , 2n подключен к первому входу (i+1)-го оптического нановолноводного Y-объединителя 6i+1 (i=0,1, ,n-1). Выход n-го оптического нановолновода 2n из группы n+1 информационных оптических нановолноводов 2 0, 21, ,2n подключен ко второму входу n-го оптического нановолноводного Y-объединителя 6n; i-ая пара телескопических нанотрубок 3i1, 3i2 расположена между выходом i-го оптического нановолновода 1i из группы n адресных оптических нановолноводов 1i, 12, , 1n и i-м выходом 4i оптического нановолноводного n-выходного разветвителя 4 по оси распространения их выходных оптических сигналов.
Под воздействием разности сил, обусловленных давлениями световых потоков (разность оптических мощностей 1-5 ватт создает разность сил 5-15 нН), внутренняя нанотрубка 3i1 i-й пары телескопических нанотрубок 3i1, 3i2 будет перемещаться в сторону оптического потока с меньшей интенсивностью (при этом необходимо иметь в виду, что минимально необходимая сила для перемещения нанотрубки составляет аттоньютоны [Multiwalled Carbon Nanotubes as Gigahertz Oscillators / Quanshui Zheng, Qing Jiang // Phys. Rev. Lett. 88, 045503. 28 January, 2002].
В крайнем левом (исходном) положении внутренняя нанотрубка 3 n1 n-й пары телескопических нанотрубок 3n1, 3n2 разрывает оптические связи между выходом n-го оптического нановолновода 2n из группы n+1 информационных оптических нановолноводов 20, 21, ,2n и вторым входом n-го оптического нановолноводного Y-объединителя 6n, при этом присутствует оптическая связь между выходом (n-1)-го оптического нановолновода 2n-1 из группы n+1 информационных оптических нановолноводов 20 , 21, ,2n и первым входом n-го оптического нановолноводного Y-объединителя 6n.
В крайнем левом положении внутренняя нанотрубка 3i1 i-й пары телескопических нанотрубок 3i1, 3i2 разрывает оптическую связь между выходом (i+1)-го оптического нановолноводного Y-объединителя 6i+1 и вторым входом i-го оптического нановолноводного Y-объединителя 6i (i=1,2, ,n-1), при этом присутствует оптическая связь между выходом (i-1)-ого оптического нановолновода 2i-1 из группы n+1 информационных оптических нановолноводов 20, 2 1, , 2n и первым входом i-го оптического нановолноводного Y-объединителя 6i (i=0,1, ,n-1).
Выход источника постоянного излучения 5 подключен ко входу оптического нановолноводного n-выходного разветвителя 4.
Выход первого оптического нановолноводного Y-объединителя 61 является выходом устройства.
Работа устройства протекает следующим образом.
С выхода источника постоянного излучения 5 оптический поток с интенсивностью излучения k×n усл.ед. поступает на вход оптического нановолноводного n-выходного разветвителя 4, на каждом выходе 41, 42, ,4n которого формируется оптический поток с интенсивностью k усл.ед.
До подачи на адресные входы оптического нанокоммутатора управляющих оптических потоков устройство находится в начальном (исходном) состоянии - каждая i-я внутренняя нанотрубка 3i1 i-й пары телескопических нанотрубок 3i1, 3i2 находится в крайнем левом (исходном) положении, что обеспечивается воздействием оптического потока с интенсивностью k усл.ед., поступающего с i-го выхода 4i оптического нановолноводного n-выходного разветвителя 4 (i=1,2, ,n).
Следовательно, ни один из информационных потоков, поступающих на информационные входы 1, 2, ,n оптического нанокоммутатора (с выходов информационных оптических нановолноводов 21, 22, ,2n) не поступит на выход устройства - на выход устройства поступит информационный поток с 0-го информационного входа (т.к. присутствует оптическая связь между выходом оптического нановолновода 20 и первым входом оптического нановолноводного Y-объединителя 61).
При коммутации информационного оптического потока с i-го информационного входа оптического нанокоммутатора на его выход одновременно подаются на каждый - 1, 2, , i-й, адресный вход оптического нанокоммутатора управляющие оптические потоки с интенсивностью m>k усл.ед. При появлении на адресных входах этих потоков внутренние нанотрубки 311 , 321, , 3i1 пар телескопических нанотрубок 311 , 312, 321, 322, , 3i1, 3i2 начнут перемещаться вправо вследствие появления разности сил, обусловленных давлениями световых потоков. При этом исчезнут оптические связи между выходом (j-1)-го оптического нановолновода 2j-1 из группы n+1 информационных оптических нановолноводов 20, 21, , 2n и первым входом j-го оптического нановолноводного Y-объединителя 6j (j=1,2, ,i). Кроме того, возникнет канал оптической связи по цепи: выход i-го оптического нановолновода 2i - первый вход (i+1)-го оптического нановолноводного Y-объединителя 6i+1 - выход (i+1)-го оптического нановолноводного Y-объединителя 6i+1 - второй вход i-го оптического нановолноводного Y-объединителя 6i - выход i-го оптического нановолноводного Y-объединителя 6i- - выход первого оптического нановолноводного Y-объединителя 61.
Следовательно, оптический поток, поступающий на i-й информационный вход, появится на выходе устройства. Все остальные внутренние нанотрубки 3(i+1)1, 3 (i+2)1, , 3n1 пар телескопических нанотрубок 3(i+1)1 , 3(i+1)2, 3(i+1)1, 3(i+1)2, , 3n1, 3n2 останутся в крайнем левом положении, не пропуская оптические потоки с (i+1)-го, (i+2)-го, n-го информационных входов оптического нанокоммутатора на выход устройства.
Таким образом, осуществляется коммутация информационных оптических потоков, поступающих из n+1 каналов передачи информации, на выход устройства.
Быстродействие оптического нанокоммутатора определяется массой внутренней нанотрубки ( 10-15-10-16 г), силой трения при ее движении ( 10-10 н), разностью интенсивностей оптических сигналов и составляет 10-9 с. Для существующих волоконно-оптических систем передачи информации подобное быстродействие обеспечивает их функционирование практически в реальном масштабе времени.
Класс G02F1/295 в оптических волноводах
Класс B82Y10/00 Нано-технология для обработки, хранения или передачи информации, например квантовые вычисления или логические схемы на одиночном электроне
графеновое устройство и способ его изготовления - патент 2511127 (10.04.2014) | |
оптический нанокоммутатор - патент 2433436 (10.11.2011) | |
оптический наносумматор - патент 2419125 (20.05.2011) |