изолирующая структура с экранами, формирующими электрическое поле

Классы МПК:H01B17/28 конденсаторные
Автор(ы):, , ,
Патентообладатель(и):АББ РИСЕРЧ ЛТД (CH)
Приоритеты:
подача заявки:
2007-12-19
публикация патента:

Изобретение относится к изолирующей структуре. Изолирующая структура содержит экраны, формирующие электрическое поле, которую можно применять в высоковольтных проходных изоляторах, высоковольтных кабелях, кабельной арматуре и в измерительных приборах, особенно в измерительных трансформаторах. Структура в соответствии с изобретением содержит слои электроизоляционного материала, между которыми вставлены проводящие листы, которые являются экранами, формирующими электрическое поле в высоковольтном силовом электрическом оборудовании. Проводящие листы изготовлены из слоя изолирующей подложки с пористой структурой, пропитываемой и сжимаемой по направлению, параллельному плоскости листа, и, по меньшей мере, одна поверхность слоя подложки имеет сильно разработанную поверхность и покрыта металлическим слоем. Слой электроизолирующей подложки имеет форму целлюлозной бумаги электроизоляционного типа. Слой электроизолирующей подложки имеет форму нетканого полотна, изготовленного из полимерного волокна. 13 з.п. ф-лы, 2 ил. изолирующая структура с экранами, формирующими электрическое   поле, патент № 2432633

изолирующая структура с экранами, формирующими электрическое   поле, патент № 2432633 изолирующая структура с экранами, формирующими электрическое   поле, патент № 2432633

Формула изобретения

1. Изолирующая структура с экранами, формирующими электрическое поле, содержащая слои электроизоляционного материала (1), между которыми помещены проводящие листы (2), имеющие функцию экранов, формирующих электрическое поле в высоковольтном силовом электрическом оборудовании, отличающаяся тем, что проводящие листы (2) содержат слой (3) электроизолирующей подложки со структурой, которая является пористой, пропитываемой и сжимаемой по направлению, параллельному плоскости листа, и по меньшей мере одна поверхность слоя (3) подложки имеет площадь разработанной поверхности, превышающую ее площадь проектированной поверхности, и покрыта металлическим слоем (4), и толщина металлического слоя (4) во много раз меньше, чем размер пор пористой структуры и структуры (3) разработанной поверхности.

2. Структура по п.1, отличающаяся тем, что слой (3) электроизолирующей подложки имеет форму целлюлозной бумаги электроизоляционного типа.

3. Структура по п.2, отличающаяся тем, что слой (3) подложки, изготовленный из изоляционной целлюлозной бумаги, отличается такой пористостью, что коэффициент воздухопроницаемости через бумагу превышает 0,5 мкм/(Па·с).

4. Структура по п.1, отличающаяся тем, что слой (3) электроизолирующей подложки имеет форму нетканого полотна, изготовленного из полимерного волокна.

5. Структура по п.1, отличающаяся тем, что слой (3) электроизолирующей подложки имеет форму слоя полимерного пеноматериала с открытыми порами.

6. Структура по любому из пп.1-5, отличающаяся тем, что металлический слой (4), по существу, изготовлен из алюминия, серебра, меди, цинка, никеля, олова, титана или сплава, состоящего из этих металлов.

7. Структура по любому из пп.1-5, отличающаяся тем, что слои электроизоляционного материала (1) изготовлены из бумаги электроизоляционного типа.

8. Структура по любому из пп.1-5, отличающаяся тем, что слои электроизоляционного материала (1) изготовлены из полимерной ткани, предпочтительно из полиэфирной ткани.

9. Структура по любому из пп.1-5, отличающаяся тем, что изолирующая структура с экранами, формирующими электрическое поле, пропитана электроизоляционным маслом.

10. Структура по любому из пп.1-5, отличающаяся тем, что изолирующая структура с экранами, формирующими электрическое поле, пропитана отверждающейся смолой.

11. Структура по любому из пп.1-5, отличающаяся тем, что толщина металлического слоя (4) находится в пределах от 5 нм до 200 нм.

12. Структура по любому из пп.1-5, отличающаяся тем, что слои электроизоляционного материала (1) изготовлены, по меньшей мере, из одной полосы, намотанной вокруг проводящего элемента.

13. Структура по п.12, отличающаяся тем, что изолирующая структура с экранами, формирующими электрическое поле, представляет собой изоляцию высоковольтного проходного изолятора.

14. Структура по п.12, отличающаяся тем, что изолирующая структура с экранами, формирующими электрическое поле, представляет собой изоляцию соединительного проводника высоковольтного измерительного трансформатора.

Описание изобретения к патенту

Предметом изобретения является изолирующая структура с экранами, формирующими электрическое поле, которую можно применять в высоковольтных проходных изоляторах, высоковольтных кабелях, кабельной арматуре и в измерительных приборах, особенно в измерительных трансформаторах.

В высоковольтном электрооборудовании и его компонентах часто применяются электроизоляционные системы, в которых имеются размещенные электропроводящие элементы, используемые для формирования электрического поля, генерируемого рабочими элементами этого оборудования или его компонентов. Элементы, используемые для формирования поля, помещенные в изоляционный материал, обычно имеют форму экранов, определяющих соответствующее распределение электрического поля. Соответствующее распределение электрического поля является особенно важным в конструкции и функционировании высоковольтных проходных изоляторов, высоковольтных кабелей, кабельной арматуры и соединительных проводников в измерительном оборудовании, таком как измерительные трансформаторы тока, напряжения или комбинированные измерительные трансформаторы. Экраны для формирования электрических полей обычно имеют форму проводящих листов, помещенных между слоями изоляционного материала. Эти листы чаще всего изготовленны из алюминиевой фольги. Иногда также используются проводящие экраны, изготовленные из проводящей бумаги или ткани, которая проводит электрический ток. Изоляционный материал, чаще всего изготовленный из листов изоляционной бумаги, наматывают вместе с проводящими экранами вокруг проводника и затем пропитывают изоляционным материалом в виде трансформаторного масла или отверждающейся смолы. Обычно перед пропитыванием изоляционный материал подвергают процессу просушивания.

Чтобы получать равномерное распределение электрического поля в поперечном сечении изолирующей структуры, должны быть выполнены условия, гарантирующие соответствующее распределение напряжения между всеми проводящими экранами и поддерживание постоянного электрического потенциала по всей поверхности каждого отдельного экрана. Эти условия зависят от электрической емкости между экранами, размеров отдельных экранов, их электрического полного сопротивления, в частности электрического активного сопротивления, и максимальной частоты, на которой требуется соответствующее формирование электрического поля.

Из описания Британского патента GB 991546 известна высоковольтная изолирующая структура, предназначенная для изолирования высоковольтного оборудования, которая содержит изолирующий каркас, состоящий из слоев изолирующих листов, которые образованы таким образом, что полная толщина слоя во много раз больше толщины основного листового материала, и этот листовой материал занимает только некоторую часть от полного объема внутренней части каркаса. Пространство между изолирующими и проводящими листами заполнено диэлектрическим материалом. Изолирующие листы изготовлены из поглощающего материала, такого как бумага, которая легко может быть пропитана маслом или другой текучей средой, или из непоглощающего материала, такого как полимерный материал. Между изолирующими слоями помещены проводящие листы, например, в форме проводящей фольги, опирающейся на гребни волнистого изолирующего листа, образующего изолирующий каркас.

Проводящие листы в форме металлической фольги, которая помещена между слоями изоляционного материала, широко применяются в электрических изолирующих структурах. Примеры использования таких изолирующих структур в различных конструкциях высоковольтных проходных изоляторов представлены в следующих описаниях патентов: США 3875327, США 4362897, США 4338487, США 4387266, США 4500745 и GB 1125964.

Из описания Японского патента JP 01283716 известен литой проходной изолятор, в котором проводящие листы изготавливают из ткани или нетканого полотна, имеющего проводящий слой на своей поверхности, например, в форме проводящей краски.

Другой тип высоковольтной изоляции известен из заявки WO 2006/001724. В представленном решении высоковольтный проходной изолятор образован слоями обмотки электроизоляционного материала вокруг цилиндрического сердечника. Между этими слоями помещены листы проводящего материала, используемые для формирования электрического поля в проходном изоляторе. По меньшей мере, один лист проводящего материала представляет собой структуру, изготовленную на основе бумаги, ткани или нетканого полотна, и он содержит проводящие частицы, взвешенные в нем и формирующие фильтрующую сеть, электропроводящую в плоскости листа. Проводящие частицы имеют по существу удлиненную форму и такие размеры, что соотношение их длины к самому большому поперечному размеру превышает 10.

Металлические листы, используемые в качестве экранов для формирования электрического поля в высоковольтных компонентах, в которых эпоксидная смола используется в виде изоляционного материала, из-за разницы между коэффициентами теплового расширения металлической фольги и эпоксидной смолы, вызывают механические напряжения, которые образуются во время процесса отверждения смолы. Эти механические напряжения сохраняются также после окончания процесса производства, и они проявляют себя особенно сильно, когда такие компоненты используются при очень низких температурах.

Проводящие листы, изготовленные из металлической фольги, отличаются обычно очень высокой электропроводностью. Это свойство в связи с геометрическим расположением листов во всей изолирующей системе может приводить к образованию в этой системе электромагнитных резонансных колебаний высоких частот и очень большой добротности. Резонансные колебания, возбуждаемые в таких системах, могут вызывать локальное перенапряжение, ведущее к повреждению изоляции. Источники возбуждения, вызывающие такие колебания, могут проявляться в системах, содержащих полупроводниковые преобразователи, которые генерируют высокие частоты, в таких как системы, используемые в передаче напряжения постоянного тока, на ветровых электростанциях или в производственных силовых системах.

С другой стороны, недостаточная проводимость красок, обычно основанных на углеродных материалах, вызывает ограничения в использовании проводящих листов в форме таких красок в высоковольтном оборудовании, особенно в применениях, в которых требуется формирование электрического поля для относительно быстрых переходных процессов, таких как удар молнии или срезанная волна.

Применение проводящих листов, изготовленных из материалов, содержащих проводящие частицы, вызывает риск, что такие частицы будут высвобождаться во время процесса разрезания на листы подходящей формы. Проникновение таких частиц в изоляционный материал может ослаблять диэлектрические свойства изолирующей структуры.

Сущность изолирующей структуры с экранами, формирующими электрическое поле, содержащими слои электроизоляционного материала, между которыми помещены проводящие листы, имеющие функцию экранов, формирующих электрическое поле в высоковольтном силовом электрическом оборудовании, заключается в том, что проводящие листы содержат слой электроизолирующей подложки со структурой, которая является пористой, пропитываемой и сжимаемой по направлению, параллельному плоскости листа, и, по меньшей мере, одна поверхность слоя подложки имеет площадь разработанной поверхности, которая больше, чем ее площадь проектированной поверхности, и покрыта металлическим слоем. Толщина металлического слоя во много раз меньше, чем размер пор пористой структуры и структуры разработанной поверхности.

Предпочтительно, толщина металлического слоя во много раз меньше, чем размер пор пористой структуры и структуры разработанной поверхности.

Предпочтительно, слой электроизолирующей подложки имеет форму целлюлозной бумаги электроизоляционного типа.

Предпочтительно, слой подложки, изготовленный из целлюлозной изоляционной бумаги, отличается такой пористостью, что коэффициент воздухопроницаемости через бумагу превышает 0,5 мкм/(Па·с).

Предпочтительно, слой электроизолирующей подложки имеет форму нетканого полотна, изготовленного из полимерного волокна.

Предпочтительно, слой электроизолирующей подложки имеет форму слоя полимерного пеноматериала с открытыми порами.

Предпочтительно, металлический слой по существу изготовлен из алюминия, серебра, меди, цинка, никеля, олова, титана или сплава, состоящего из этих металлов.

Предпочтительно, слои электроизоляционного материала изготовлены из бумаги электроизоляционного типа.

Предпочтительно, слои электроизоляционного материала изготовлены из полимерной ткани, предпочтительно из полиэфирной ткани.

Предпочтительно, изолирующая структура с экранами, формирующими электрическое поле, пропитана электроизоляционным маслом.

Предпочтительно, изолирующая структура с экранами, формирующими электрическое поле, пропитана отверждающейся смолой.

Предпочтительно, толщина металлического слоя находится в пределах от 5 до 200 нм.

Предпочтительно, слои электроизоляционного материала изготовлены, по меньшей мере, из одной полосы, намотанной вокруг проводящего элемента.

Предпочтительно, изолирующая структура с экранами, формирующими электрическое поле, представляет собой изоляцию высоковольтного проходного изолятора.

Предпочтительно, изолирующая структура с экранами, формирующими электрическое поле, представляет собой изоляцию соединительного проводника высоковольтного измерительного трансформатора.

Преимущество структуры в соответствии с изобретением заключается в упругости металлического слоя в направлении, параллельном плоскости поверхности слоя подложки, на который он нанесен, которая является результатом разработанной природы поверхности металлического слоя и сжимаемости слоя подложки, обеспечивающей возможность неограниченного теплового расширения и сжатия всей структуры без снятия механических напряжений.

Эффективная электрическая проводимость проводящего листа в форме металлического слоя с конкретной толщиной и разработанной поверхностью меньше, чем у плоской поверхности такой же толщины. Кроме того, для металлического слоя в форме покрытия, нанесенного на слой изолирующей подложки с разработанной поверхностью, толщина металлического слоя может быть значительно меньше, чем у металлической фольги. Это позволяет снижать электрическую проводимость до величины, ограничивающей добротность резонансных систем, встречающихся в данном компоненте оборудования, что в свою очередь предотвращает возникновение перенапряжений, производимых источниками очень высоких частот.

В то же самое время использование металлического слоя позволяет получать значения проводимости, которые намного больше, чем для красок, основанных на углеродных материалах, и достаточные для соответствующего формирования электрического поля во время ударов молнии или срезанных волн заданной формы.

Разрезание на соответствующие формы проводящих листов с проводящим слоем в форме непрерывного металлического слоя не приводит к высвобождению проводящих частиц в кромках разрезов, таким образом значительно снижая риск проникновения таких частиц в изоляционный материал и ослабления диэлектрических свойств изолирующей структуры.

Примерный вариант осуществления изобретения представлен на чертежах, где фиг.1 показывает сечение структуры в плоскости, перпендикулярной поверхности изоляционных слоев и проводящих листов, а фиг.2 представляет увеличение разреза проводящего листа и слоев электроизоляционного материала.

В варианте осуществления каждый из слоев электроизоляционного материала изготавливают из целлюлозной бумаги 1 электроизоляционного типа толщиной 100 мкм, превращенной в крепированную бумагу с общей толщиной от 0,3 до 0,5 мм. Крепированная структура бумаги на чертежах не показана. Проводящие листы 2 состоят из слоя электроизолирующей подложки в форме бумаги 3 электроизоляционного типа толщиной от 30 до 70 мкм и пористой структуры, такой, что коэффициент воздухопроницаемости через бумагу составляет не меньше 0,5 мкм/(Па·с). В качестве альтернативы может использоваться бумага толщиной от 70 мкм до 150 мкм и с коэффициентом воздухопроницаемости, по меньшей мере, 10 мкм/(Па·с). Каждый из упомянутых типов бумаги отличается структурой сильно разработанной поверхности, создаваемой ячейкой сетки целлюлозных волокон, и средний размер большинства пор в такой бумаге находится в пределах от 5 до 50 мкм. Пористая структура таких типов целлюлозной бумаги обеспечивает их сжимаемость по направлению, параллельному плоскости бумажного листа. Одна поверхность бумаги электроизоляционного типа, составляющая слой подложки, покрыта алюминиевым слоем 4 толщиной 10-30 нм, в то время как поверхностное сопротивление полученного проводящего слоя находится в пределах от 1 до 10 Ом на квадрат.

В варианте осуществления изолирующая структура формирует обмотку, на чертежах не показана, вокруг проводящего сердечника, где крепированная бумага намотана в виде одной полосы, а между слоями крепированной бумаги помещены проводящие листы. Полученную в результате изолирующую структуру пропитывают эпоксидной смолой, и затем она отверждается. После отверждения изолирующая структура используется как изолирующий сердечник высоковольтного проходного изолятора.

В другом варианте осуществления слои электроизоляционного материала изолирующей структуры изготавливают из гладкой электроизоляционной бумаги наматываемого типа толщиной от 40 до 100 мкм. Проводящие листы изготавливают таким же образом, как в предыдущем примере. Изолирующую структуру изготавливают в форме обмотки, на чертежах не показана, вокруг одного из соединений проводника в структуре высоковольтного измерительного трансформатора. Изолирующую структуру, изготовленную таким способом, как используется в измерительном трансформаторе, затем пропитывают электроизоляционным маслом.

В другом варианте осуществления слои электроизоляционного материала изготавливают из полимерной ткани электроизоляционного типа, например, изготовленной из сложного полиэфира, толщиной между 50 и 500 мкм. Проводящие листы изготавливают таким же образом, как в предыдущих примерах. Изолирующая структура формирует обмотку, на чертежах не показана, вокруг проводящего сердечника, причем полимерную ткань наматывают в виде одной полосы, а проводящие листы помещают между слоями изолирующей полимерной ткани. Полученную в результате изолирующую структуру пропитывают эпоксидной смолой, и затем она отверждается. После отверждения изолирующая структура используется как изолирующий сердечник высоковольтного проходного изолятора.

В другом варианте осуществления проводящие листы изготавливают из нетканого полотна, изготовленного из полиэфирных волокон толщиной 10-100 мкм и средними размерами пор, находящимися в пределах от 50 до 2000 мкм. По меньшей мере, одна сторона нетканого полотна покрыта металлическим слоем толщиной 5-50 нм, предпочтительно алюминиевым слоем, в то время как слои электроизоляционного материала изготавливают и наматывают так же, как в одном из предыдущих примеров.

В еще одном варианте осуществления проводящие листы изготавливают из листов полиэфирного пеноматериала с открытыми порами, причем лист покрывают алюминиевым слоем, по меньшей мере, с одной стороны.

Наверх