устройство для измерения влажности почвы
Классы МПК: | G01N27/22 путем измерения электрической емкости G01N22/04 определение влагосодержания |
Автор(ы): | Ахобадзе Гурам Николаевич (RU) |
Патентообладатель(и): | Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН (RU) |
Приоритеты: |
подача заявки:
2010-06-25 публикация патента:
10.11.2011 |
Предлагаемое изобретение относится к измерительной технике. Устройство содержит генератор электромагнитных колебаний с перестраиваемой частотой 1, чувствительный элемент, выполненный в виде круглого волноводного резонатора 2, детектор 3, соединенный выходом со входом измерителя амплитудно-частотных характеристик 4, и индикатор 5. При этом чувствительный элемент выполнен в виде круглого волноводного резонатора с сосной цилиндрической металлической перегородкой на каждом конце и один из концов волновода дополнительно закрыт диэлектрической пластиной. Изобретение обеспечивает повышение точности измерения и исключение чувствительности к налипанию. 1 ил.
Формула изобретения
Устройство для измерения влажности почвы, содержащее генератор сигналов, чувствительный элемент и индикатор, отличающееся тем, что в него введены детектор и измеритель амплитудно-частотных характеристик сигналов, чувствительный элемент выполнен в виде круглого волноводного резонатора с соосной цилиндрической металлической перегородкой на каждом конце и один из концов волновода дополнительно закрыт диэлектрической пластиной, причем выход генератора сигналов соединен со входом волноводного резонатора, выход которого через детектор подключен ко входу измерителя амплитудно-частотных характеристик, выход измерителя амплитудно-частотных характеристик соединен со входом индикатора.
Описание изобретения к патенту
Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. Известен механический влагомер для постоянного контроля за влажностью почвы горшочных, балконных или садовых растений (см. Mechanischer Feuchtigkeitsmesser fur Bodenfeuchtingkeitsuberwachung von Pflanzen: Заявка 102004002272 Германия, МПК7 G01N 19/10. Florasus AG, Wein Reinhold. № 102004002272; Заявл. 16.01.2004; опубл. 11.08.2005).
В этом влагомере по показаниям шкального индикатора, стрелка которого отклоняется в зависимости от растяжения и сжатия элемента, изготовленного из материала, чувствительного к влажности почвы, определяют контролируемый параметр.
Недостатком этого известного устройства является контактность чувствительного элемента с контролируемой средой.
Наиболее близким технических решением к предлагаемому является принятый автором за прототип электронный датчик для измерения влажности почвы (см. Elektronischer sensor fur Wandlung der Erdfenchtigkeit in eine elektrische Grosse: Заявка 102004002271 Германия, МПК7 G01N 27/22, G01N 33/24. Florasus AG, Wein Reinhold. № 102004002271.2; Заявл. 16.01.2004; опубл. 11.08.2005).
Принцип действия этого датчика, предназначенного для измерения влажности почвы горшочных или балконных растений, базируется на конденсаторе, диэлектрик которого имеет диэлектрическую проницаемость, зависящую от влажности почвы. Недостатком этого устройства следует считать низкую точность из-за температурных влияний на диэлектрическую проницаемость диэлектрика конденсатора и чувствительность к налипанию.
Задачей заявляемого технического решения является повышение точности измерения и исключение чувствительности к налипанию.
Поставленная задача достигается тем, что в устройство для измерения влажности почвы, содержащее генератор сигналов, чувствительный элемент и индикатор, введены детектор и измеритель амплитудно-частотных характеристик сигналов, чувствительный элемент выполнен в виде круглого волноводного резонатора с соосной цилиндрической металлической перегородкой на каждом конце и один из концов волновода дополнительно закрыт диэлектрической пластиной, при этом выход генератора сигналов соединен со входом волноводного резонатора, выход которого через детектор подключен ко входу измерителя амплитудно-частотных характеристик, выход измерителя амплитудно-частотных характеристик соединен с индикатором.
Существенными отличительными признаками указанной выше совокупности является выполнение чувствительного элемента в виде круглого волноводного резонатора с соосной цилиндрической металлической перегородкой на каждом конце, наличие детектора и измерителя амплитудно-частотных характеристик сигналов.
В заявляемом техническом решении благодаря свойствам перечисленных признаков, определение резонансной частоты волноводного круглого резонатора с соосной цилиндрической металлической перегородкой на каждом конце дает возможность решить поставленную задачу: обеспечить высокую точность измерения влажности почвы и исключение чувствительности к налипанию.
На чертеже приведены функциональные схемы предлагаемого устройства.
Устройство содержит генератор электромагнитных колебаний с перестраиваемой частотой 1, круглый волноводный резонатор 2, детектор 3, соединенный выходом со входом измерителя амплитудно-частотных характеристик 4, и индикатор 5.
Устройство работает следующим образом. Выходным сигналом генератора электромагнитных колебаний с перестраиваемой частотой 1 возбуждают электромагнитные колебания в круглом волноводном резонаторе 2, имеющем соосные цилиндрические металлические перегородки на каждом конце.
В общем виде для собственной резонансной частоты 0 возбужденного электромагнитными колебаниями цилиндрического резонатора, заполненного какой-нибудь средой, можно записать
где а и l - внутренний радиус и длина резонатора соответственно; и µ - диэлектрическая и магнитная проницаемость среды соответственно. Числа m, n и p определяют соответственно вариацию поля по азимуту, радиусу и высоте резонатора. Через Amn обозначен корень бесселовой функции.
Согласно теории электромагнитного поля в цилиндрическом резонаторе могут существовать поперечно-электрические TEmnp (m=0, 1, 2 ; n=1, 2, 3 ; р=1, 2, 3 ) и поперечно-магнитные TMmnp (m=0, 1, 2 ; n=1, 2, 3 ; р=0, 1, 2, ) колебания.
Выражение (1) с учетом того, что данный круглый волновод (цилиндрический резонатор) на концах имеет соосные цилиндрические перегородки, способствующие поддержанию в полости резонатора ТЕ011 колебания (m=0, n=1, р=1), можно переписать как
Из уравнения (2) следует, что при известных значениях µ, A01, а и l измерением частоты 0 можно определить диэлектрическую проницаемость среды в круглом волноводном резонаторе. Кроме того, одним из важных достоинств конструкции предлагаемого чувствительно элемента (круглого волновода) является исключение его чувствительности к налипанию и другим загрязнениям на стенках волновода из-за того, что напряжение электрического поля в режиме ТЕ011 равно нулю на внутренней поверхности резонатора.
Пусть круглый волновод заполнен контролируемой почвой. Для этого один из концов волновода дополнительно необходимо закрыть диэлектрической пластинкой. При этом диэлектрическая проницаемость материала пластинки приблизительно должна равняться диэлектрической проницаемости воздуха. Это требуется для того, чтобы не нарушить существование режима ТЕ011 колебаний в полости резонатора.
Для установления зависимости 0 от влажности почвы можно использовать известную зависимость диэлектрической проницаемости почвы от влагосодержания воды в ней (см. Радиолокационные методы исследования Земли. Под редакцией профессора Ю.А.Мельника. M.: Советское радио», 1980, стр.148)
где вп - диэлектрическая проницаемость влажной почвы; 0 - величина диэлектрической проницаемости, характеризующая состав почвы ( 0=2 для песчаных и 0=4 для глинистых почв); К - коэффициент, зависящий от диапазона длин волн (К=0,55 для сантиметрового диапазона длин волн); mв=(Мв-Мс)/Mc - влажность почвы (Мв и Me - удельная масса влажной и сухой почв соответственно). Здесь следует отметить, что формула (3) достаточно точно может работать, если mв 30 40%.
Из сопоставления формул (2) и (3) видно, что при известной почве и диапазоне длин электромагнитных волн, если подставить в формуле (2) вместо значение вп, определяемое формулой (3), то измерением частоты 0 можно вычислить влажность почвы mв .
Согласно предлагаемому технического решению для измерения резонансной частоты 0, сигнал с выхода круглого волноводного резонатора через детектор 3 подают на вход измерителя амплитудно-частотных характеристик (АЧХ) 4. С помощью этого измерителя определяют резонансную частоту возбужденного электромагнитными колебаниями резонатора при отсутствии почвы в нем, что достигается путем перестройки частоты генератора электромагнитных колебаний. После этого при наличии влажной почвы в полости резонатора, изменением частоты генератора электромагнитных колебаний находят максимум (пик) амплитудной частотной характеристики выходного резонансного сигнала чувствительного элемента (резонатора), соответствующий частоте, связанной с влажностью почвы. Далее с выхода АЧХ сигнал поступает в индикатор 5, где отображается информация о влажности почвы в нужном виде, например, в процентах.
Таким образом, в заявляемом техническом решении показано, что на основе определения резонансной частоты круглого волноводного резонатора, имеющего на концах соосные цилиндрические металлические перегородки, можно обеспечить повышение точности измерения влажности почвы и исключение чувствительности к налипанию.
Класс G01N27/22 путем измерения электрической емкости
Класс G01N22/04 определение влагосодержания