способ изготовления изделий из композиционного материала

Классы МПК:C04B35/80 волокна, нити, пластинки, спиральные пружины или подобные им формованные материалы
C04B35/577 композиты
C04B35/532 содержащих карбонизуемое связующее
Автор(ы):, , , , ,
Патентообладатель(и):Открытое акционерное общество "Уральский научно-исследовательский институт композиционных материалов" (RU)
Приоритеты:
подача заявки:
2010-04-12
публикация патента:

Изобретение относится к области производства объемносилицированных изделий. Технический результат изобретения - упрощение способа производства изделий и повышения его надежности. При изготовлении изделий из композиционного материала в качестве заготовки используют тканый углеродный наполнитель, пропитывают его композицией с содержанием компонентов в массовых частях: бакелит жидкий марки БЖ-3100, кремнийорганическая смола марки К-9 100-140, спирто-ацетоновая смесь 70-100 (с разбросом компонентов не более 10%), продукт АДЭ-3 0,1-0,2. Далее выполняют сушку, отверждение, карбонизацию, высокотемпературную обработку при температуре 1800-2000°С с образованием карбида кремния и силицирование из газовой фазы. 2 з.п. ф-лы, 1 табл.

Формула изобретения

1. Способ изготовления изделий из композиционного материала, включающий изготовление заготовки из углеродного волокнистого наполнителя, пропитку ее композицией с силицирующим агентом и связующим, сушку, отверждение, карбонизацию, высокотемпературную обработку с последующим охлаждением и силицирование, отличающийся тем, что в качестве заготовки используют углеродный тканый наполнитель, который пропитывают композицией из жидкого бакелита марки БЖ-3, кремнийорганической смолы К-9, спирто-ацетоновой смеси и продукта АДЭ-3 с компонентами в массовых частях:

бакелит жидкий марки БЖ-3 100
кремнийорганическая смола марки К-9100-140
спирто-ацетоновая смесь70-100
с разбросом компонентов не более 10%способ изготовления изделий из композиционного материала, патент № 2433982
продукт АДЭ-30,1-0,2


затем выполняют сушку, отверждение, карбонизацию, высокотемпературную обработку с последующим охлаждением, после чего производят силицирование из газовой фазы.

2. Способ по п.1, отличающийся тем, что спирто-ацетоновую смесь выполняют из изопропилового спирта и ацетона в массовом соотношении 1:1.

3. Способ по п.1, отличающийся тем, что высокотемпературную обработку ведут при температуре 1800-2000°С в течение 20-30 минут с последующим охлаждением материала вместе с печью.

Описание изобретения к патенту

Изобретение относится к области производства объемносилицированных углеродных изделий.

Известен способ изготовления изделий из композиционного материала, включающий изготовление заготовки из углеродного волокнистого наполнителя, пропитку ее композицией с силицирующим агентом и связующим, сушку, отверждение, карбонизацию, высокотемпературную обработку с последующим охлаждением и силицирование (керамизацию) (патент RU 2351572 С2, С04В 35/532, С04В 35/577 на «Способ изготовления изделий из углеродкерамического композиционного материала», опубл. 10.04.2009).

По своим признакам и достигаемому результату этот способ наиболее близок к заявляемому и принят за прототип.

При этом способе изготовления изделий в качестве заготовки используют карбонизованную (с выжженной в инертной среде органической частью состава) углепластиковую заготовку, которую перед силицированием пропитывают раствором органосиликона в органическом растворителе, сушат, а затем в едином технологическом цикле термостабилизируют и силицируют.

В процессе термообработки при силицировании получают жидкий низковязкий кремний, заполняющий поры заготовки с образованием в ней карбида кремния.

Недостаток этого способа заключается в его сложности и малой надежности.

Сложность способа объясняется использованием дублирующих операций пропитки карбонизованной заготовки пропиточным раствором, выдержки в нем и сушки, что сопровождается значительными временными и энергетическими затратами и прерыванием единого технологического цикла при изготовлении изделий из углеродкерамического композиционного материала, начинающегося с углепластиковой стадии.

Малая надежность способа объясняется неоднородностью свойств получаемого материала изделий, невозможностью управления последними с требуемой точностью в широком интервале и относительно невысокой степенью силицирования материала. Неоднородность свойств объясняется тем, что в качестве исходной используют карбонизованную заготовку, заполняя пропиточным раствором ее открытые поры, распределение и размеры которых по объему заготовки крайне неоднородны и практически не поддаются управлению. Кроме того, в карбонизованной заготовке имеются и закрытые поры, распределение которых по объему также неравномерно и которые вообще не заполняются пропиточным раствором. Невысокая степень силицирования материала объясняется тем, что при использовании органосиликона в качестве силицирующего агента выход карбида кремния составляет не более 20% от массы последнего.

Задача изобретения заключается в упрощении способа и повышении его надежности.

Эта задача решается усовершенствованием способа изготовления изделий из композиционного материала, включающего изготовление заготовки из углеродного волокнистого наполнителя, пропитку ее композицией с силицирующим агентом и связующим, сушку, отверждение, карбонизацию, высокотемпературную обработку с последующим охлаждением и силицирование.

Усовершенствование заключается в том, что в качестве заготовки используют углеродный тканый наполнитель, который пропитывают композицией из жидкого бакелита марки БЖ-3, кремнийорганической смолы марки К-9, спирто-ацетоновой смеси и продукта АДЭ-3 с компонентами в массовых частях:

бакелит жидкий марки БЖ-3 100
кремнийорганическая смола марки К-9100-140
спирто-ацетоновая смесь70-100
с разбросом компонентов не более 10%способ изготовления изделий из композиционного материала, патент № 2433982
продукт АДЭ-30,1-0,2;

затем выполняют сушку, отверждение, карбонизацию, высокотемпературную обработку с последующим охлаждением, после чего производят силицирование из газовой фазы;

спирто-ацетоновую смесь выполняют из изопропилового спирта и ацетона в массовом соотношении 1:1;

высокотемпературную термообработку ведут при температуре 1800-2000°С в течение 20-30 минут с последующим охлаждением материала вместе с печью.

При этом жидкий бакелит марки БЖ-3 (ГОСТ 4559-78) представляет собой фенолформальдегидную смолу резольного типа, получаемую в результате поликонденсации фенола с формальдегидом и применяемую в качестве связующего при изготовлении угле-, стеклопластиков и других композиционных материалов.

Кремнийорганическая смола К-9 (ТУ 2228-352-09201208-96) представляет собой продукт конденсации метилсилантриола и фенилсилантриола, полученных из соответствующих силанхлоридов, и применяется для изготовления стеклотекстолитов и изделий из них радиотехнического назначения, для изготовления шпатлевок и пресс-материалов.

Продукт АДЭ-3 (ТУ 6-02-573-87) представляет собой диэтиламинометилтриэтоксисилан и предназначен для использования в качестве активного отвердителя кремнийорганических и органических смол.

Использование в качестве заготовки углеродного тканого наполнителя позволяет выполнить его с равномерно распределенной пористостью в теле, последующая пропитка его композицией из жидкого бакелита, кремнийорганической смолы марки К-9, спирто-ацетоновой смеси и продукта АДЭ-3 в указанных выше массовых частях позволяет пропитать тканый наполнитель композицией с равномерно распределенным в ней связующим и силицирующим агентом (смолой К-9) и, после выполнения сушки, отверждения, карбонизации, высокотемпературной обработки с последующим охлаждением, получить композиционный материал с равномерным распределением в нем карбида кремния и повышенным его процентным содержанием, а последующее силицирование материала из газовой фазы позволяет заполнить карбидом кремния остаточные поры и сформировать поверхностную защитную карбидную пленку на изделии.

Такое выполнение способа позволяет обеспечить его упрощение и повысить надежность.

Применение спирто-ацетоновой смеси в массовом соотношении 1:1 обеспечивает оптимальную растворимость и химическую совместимость компонентов пропиточной композиции.

Выполнение высокотемпературной обработки при температуре 1800-2000°С в течение 20-30 минут с последующим охлаждением вместе с печью позволяет осуществить термохимическое силицирование в процессе получения углерод-углеродного композиционного материала изделия с обеспечением максимальной равномерности распределения и дисперсности карбида кремния в нем.

Выполнение силицирования из газовой фазы позволяет получить изделие из плотного, монолитного, углерод-карбидокремниевого композиционного материала.

При осуществлении предлагаемого способа сначала изготавливают заготовку из углеродного тканого наполнителя, который пропитывают вышеприведенной однородной композицией, (экспликацию см. выше), чем достигается равномерное распределение связующего и силицирующего агента в достаточных количествах для химического взаимодействия друг с другом в объеме наполнителя.

Затем производят сушку пропитанного композицией наполнителя в течение не менее 48 часов при цеховой (15-25°С) температуре (чем фиксируют равномерное распределение связующего и силицирующего агента в наполнителе и обеспечивают полное удаление из него избыточных летучих веществ).

В зависимости от конечных требований к материалу пропитанный и высушенный наполнитель может подвергаться отверждению путем, например, обработки давлением до 0,7 МПа с одновременным его низкотемпературным (способ изготовления изделий из композиционного материала, патент № 2433982 200°С) нагревом и последующей выдержкой.

Высушенный и отвержденный наполнитель подвергают карбонизации при температуре 600-650°С, чем обеспечивают равномерное по объему заготовки выделение свободной двуокиси кремния за счет термической деструкции кремнийорганической смолы К-9.

Далее высушенный, отвержденный и карбонизованный наполнитель подвергают высокотемпературной обработке, например, при 1850°С (чем достигается термохимическое силицирование в соответствии с химической реакцией

способ изготовления изделий из композиционного материала, патент № 2433982

Затем термообработанный наполнитель, после охлаждения, подвергают силицированию из газовой фазы (обработке, например, в среде паров кремния при температуре до 1850°С, либо в атмосфере монометилсилана), чем достигается повышение плотности и монолитности углерод-углеродного композиционного материала изделия.

Все приведенные данные подтверждены результатами испытаний опытных образцов на основе наполнителя в виде пластины (200×150×3) мм, сшитой из 6 слоев углеродной ткани УТ-900П (табл.1).

Углеродная ткань УТ-900П (СТО 1916-502-75969440-2006) изготавливается из углеродных волокон, полученных карбонизацией полиакрилонитрильных (ПАН) волокон, и предназначена для наполнения пластмасс при изготовлении углепластиков конструкционного назначения, прессованных материалов различного назначения, углерод-углеродных композиционных материалов и для других технических целей.

Для характеристики равномерности распределения карбида кремния: в материале изделия, структуре материала и равномерности его свойств из данных пластин (200×150×3) мм вырезали квадратные образцы размером 30×30 мм равномерно по диагоналям пластин в количестве 10 шт., в каждом из которых определяли величину открытой пористости и плотности по ОСТ 92-0903-78 и содержания карбида кремния весовым методом, путем выжигания углеродной составляющей и определения массовой доли остатка карбида кремния. Равномерность свойств материала изделия характеризовали величиной среднеквадратичного отклонения (способ изготовления изделий из композиционного материала, патент № 2433982 ) определения пористости, плотности и содержания карбида кремния. Результаты приведены в табл.1.

Анализ данных табл.1 показывает, что при значениях содержания компонентов пропиточной композиции в пределах интервалов, приведенных в формуле изобретения, содержание карбида кремния, плотность и пористость в различных зонах образца композиционного материала незначительно (в пределах 2-3%) отличаются от среднего значения, что свидетельствует о достаточно высокой степени равномерности распределения карбида кремния в объеме образца изделия. При этом композиционный материал становится более плотным за счет мелкодисперсности карбида кремния и менее пористым, сохраняя значительную степень равномерности свойств. Кроме того, образование карбида кремния по реакции (1) происходит исключительно за счет углерода, образующегося в виде кокса при карбонизации бакелита БЖ-3, что исключает возможность взаимодействия двуокиси кремния с углеродом тканого наполнителя и не приводит к его ослаблению, повышая тем самым надежность способа.

Выполнение способа по изобретению позволило примерно в 2 раза сократить время изготовления изделий, количество операций технологического процесса и его энергоемкость.

Способ изготовления изделий из композиционного материала обеспечивает мелкодисперсность, повышенную равномерность и управляемость распределения карбида кремния в получаемом углерод-карбидокремниевом материале и характеризуется, по сравнению с прототипом, большей простотой и надежностью, а также возможностью изготовления более широкой номенклатуры изделий с наперед заданными, гарантированно управляемыми свойствами.

Таблица 1
№ образца Содержание компонентов в пропиточной композиции, масс. части Содержание карбида кремния (SiC), % способ изготовления изделий из композиционного материала, патент № 2433982 SiC Плотность, (способ изготовления изделий из композиционного материала, патент № 2433982 ), г/см3 способ изготовления изделий из композиционного материала, патент № 2433982 способ изготовления изделий из композиционного материала, патент № 2433982 Открытая пористость (П),% способ изготовления изделий из композиционного материала, патент № 2433982 П
Бакелит жидкий БЖ-3 Смола К-9Спирто-ацетоновая смесьПродукт АДЭ-3
1 10070 400,05 7,50,7 1,440,14 12,01,4
2 100105 750,10 11,30,2 1,550,03 4,60,3
3 100120 850,15 12,90,2 1,570,03 3,80,3
4 100135 950,20 14,50,3 1,580,04 3,00,2
5 100180 1400,40 18,02,8 1,460,15 10,41,0

Класс C04B35/80 волокна, нити, пластинки, спиральные пружины или подобные им формованные материалы

деталь малой толщины из термоструктурного композиционного материала и способ ее изготовления -  патент 2529529 (27.09.2014)
керамический композиционный материал на основе алюмокислородной керамики, структурированной наноструктурами tin -  патент 2526453 (20.08.2014)
боридная нанопленка или нанонить и способ их получения (варианты) -  патент 2524735 (10.08.2014)
композиция керамического волокна, растворимая в соли -  патент 2521205 (27.06.2014)
способ выравнивания поверхности детали, изготовленной из композиционного материала с керамической матрицей -  патент 2520108 (20.06.2014)
керамический композиционный материал и способ его получения -  патент 2517146 (27.05.2014)
способ получения высокотемпературного радиотехнического материала -  патент 2498964 (20.11.2013)
высокопрочная нанопленка или нанонить и способ их получения (варианты) -  патент 2492139 (10.09.2013)
композиция для огнеупорных изделий объемного прессования -  патент 2473515 (27.01.2013)
способ получения волокнистого керамического материала -  патент 2466966 (20.11.2012)

Класс C04B35/577 композиты

способ изготовления изделий из композиционных материалов -  патент 2516096 (20.05.2014)
шихта для изготовления ударостойкой керамики (варианты) -  патент 2514068 (27.04.2014)
способ изготовления изделий из углерод-карбидокремниевого материала в форме оболочек -  патент 2513497 (20.04.2014)
способ изготовления изделий из углерод-карбидокремниевого материала -  патент 2497778 (10.11.2013)
способ получения спеченной керамики, керамика, полученная при помощи способа, и содержащая ее запальная свеча -  патент 2490231 (20.08.2013)
способ изготовления изделий из углерод-карбидокремниевого материала -  патент 2487850 (20.07.2013)
способ изготовления изделий из керамоматричного композиционного материала -  патент 2486163 (27.06.2013)
способ изготовления изделий из углерод-карбидокремниевого материала -  патент 2486132 (27.06.2013)
способ изготовления изделий из композиционного материала -  патент 2484013 (10.06.2013)
способ изготовления герметичных изделий из углерод-карбидокремниевого материала -  патент 2480433 (27.04.2013)

Класс C04B35/532 содержащих карбонизуемое связующее

способ получения фрикционного композиционного углерод-углеродного материала и материал -  патент 2510387 (27.03.2014)
материал для углеродного электрода -  патент 2480539 (27.04.2013)
материал для углеродного электрода -  патент 2480538 (27.04.2013)
способ изготовления герметичных изделий из углерод-карбидокремниевого материала -  патент 2480433 (27.04.2013)
способ изготовления образцов для экспресс-оценки качества графитированного наполнителя при силицировании изделий на его основе -  патент 2475462 (20.02.2013)
способ производства анодной массы -  патент 2464360 (20.10.2012)
способ получения графитированного материала с повышенной абразивной стойкостью -  патент 2443623 (27.02.2012)
способ изготовления огнеупора и огнеупор, изготовленный таким способом -  патент 2380342 (27.01.2010)
способ изготовления изделий из углеродсодержащего композиционного материала -  патент 2370436 (20.10.2009)
способ изготовления изделий из углеродкерамического композиционного материала -  патент 2351572 (10.04.2009)
Наверх