способ определения остаточных напряжений по характеристикам твердости материала
Классы МПК: | G01N3/42 путем получения отпечатков от индентера при приложении к нему постоянной нагрузки, например сферического, пирамидального |
Автор(ы): | Рафалович Игорь Моисеевич (RU) |
Патентообладатель(и): | Открытое акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" (ОАО "НПО "ЦНИИТМАШ") (RU) |
Приоритеты: |
подача заявки:
2010-02-12 публикация патента:
27.11.2011 |
Изобретение относится к области общего машиностроения, в частности к способам определения остаточных напряжений в изделиях при их изготовлении и последующей эксплуатации. Способ определения остаточных напряжений по характеристикам твердости материала заключается в том, что уровень остаточных напряжений на поверхности изделия оценивают по изменению регистрируемых значений твердости материала в локальных зонах при нанесении параллельных надрезов. Надрезы наносят под углом 90° по отношению друг к другу, ориентируя их в наиболее вероятном направлении действия главных напряжений. Технический результат изобретения - возможность оперативного контроля уровня остаточных напряжений в материале конструкции или изделия в заводских условиях в процессе их изготовления, а также в условиях эксплуатации. 1 ил.
Формула изобретения
Способ определения остаточных напряжений по характеристикам твердости материала, отличающийся тем, что уровень этих напряжений на поверхности изделия оценивают по изменению регистрируемых значений твердости материала в локальных зонах при нанесении параллельных надрезов под углом 90° по отношению друг к другу, ориентированных в наиболее вероятном направлении действия главных напряжений.
Описание изобретения к патенту
Изобретение относится к области общего машиностроения, в частности к способам определения остаточных напряжений в изделиях при их изготовлении и последующей эксплуатации.
Известны способы определения остаточных напряжений с использованием тензорезисторов, устанавливаемых в зонах контроля, см. Биргер И.А. Остаточные напряжения. - М.: Машгиз, 1963, 232 с. Они обладают высокой точностью и позволяют получить данные по напряженно-деформированному состоянию (НДС) материала в локальных зонах изделия. Недостатком этих способов является их высокая трудоемкость и стоимость. Данные способы относятся к разрушающим методам исследований, что ограничивает возможности их использования.
На практике часто используют неразрушающие способы контроля НДС металла. Они менее трудоемки и обладают меньшей точностью. Среди этих способов наибольшее распространение получил магнитно-шумовой способ контроля, см. Инструкцию по диагностированию технического состояния подземных стальных газопроводов. РД 12-411-01. Госгортехнадзор России, 2001 г. Магнитно-шумовой способ контроля основан на использовании корреляционных зависимостей между магнитными характеристиками материала и уровнем остаточных напряжений.
Магнитно-шумовой способ контроля обладает следующими недостатками:
а) Тарировка измерительных приборов должна производиться в специализированных центрах.
б) Для каждого прибора существуют индивидуальные тарировочные таблицы (по маркам сталей), эти таблицы не пригодны для других приборов этого типа.
в) Магнитные свойства одних и тех же марок сталей могут изменяться в достаточно широких пределах, в связи с чем точность измерений невелика.
Технической задачей изобретения является разработка способа определения остаточных напряжений по характеристикам твердости конструкционных сталей. Преимуществом заявляемого способа является возможность оперативного контроля уровня остаточных напряжений в материале конструкции или изделия в заводских условиях в процессе их изготовления, а также в условиях эксплуатации. При этом в качестве измерительных приборов могут быть использованы переносные твердомеры ударного и статического действия.
Принцип использования характеристик твердости материала при оценке уровня остаточных напряжений в металле основан на том, что при измерении твердости происходит пластическое деформирование материала в зоне его контакта с индентором измерительного прибора. При этом исходное напряженно-деформированное состояние материала (наличие или отсутствие остаточных напряжений) оказывает влияние на характер этих деформаций и, в конечном итоге, на регистрируемые значения твердости.
Для пояснения существа заявляемого способа определения остаточных напряжений по характеристикам твердости материала на чертеже представлен график изменения твердости металла в локальных зонах призматического образца 50×75×500 мм, нагружаемого по схеме 4-точечного изгиба (низколегированная сталь, 02=640 МПа). Измерения твердости проводили в зоне максимальных растягивающих напряжений и на боковой поверхности образца, в зонах растягивающих и сжимающих напряжений. Как видно из графика, наблюдается хорошая корреляция между уровнем растягивающих и сжимающих напряжений в различных зонах нагружаемого образца и регистрируемыми значениями твердости.
Предлагаемый способ определения остаточных напряженки заключается в том, что уровень остаточных напряжений в локальных зонах на поверхности изделия оценивают по изменению регистрируемых значений твердости металла в этих зонах относительно исходных значений (при отсутствии напряжений).
С учетом 2-осного напряженного состояния материала, для оценки уровня главных напряжений 1ост и 2ост, в зонах контроля делают параллельные надрезы, ориентированные под углом 90° по отношению друг к другу, глубиной до нескольких миллиметров. Пространственная ориентация надрезов должна учитывать технологические особенности изготовления изделий таким образом, чтобы геометрические оси надрезов совпадали с наиболее вероятным направлением действия главных напряжений. Надрезы разной ориентации в зонах контроля располагают так, чтобы они не оказывали взаимного влияния на результаты определения уровня остаточных напряжений, 1ост и 2ост. Остаточные напряжения определяют по корреляционным зависимостям ост=f( H).
Преимуществом заявляемого способа является возможность оперативного контроля уровня остаточных напряжений в материале конструкции или изделия в заводских условиях в процессе их изготовления, а также в условиях эксплуатации. В качестве измерительных приборов могут быть использованы переносные твердомеры ударного и статического действия.
Класс G01N3/42 путем получения отпечатков от индентера при приложении к нему постоянной нагрузки, например сферического, пирамидального