калибровочная установка

Классы МПК:E21B47/00 Исследование буровых скважин
G01V13/00 Изготовление, градуировка, чистка или ремонт приборов и устройств, отнесенных к группам  1/00
G01V5/12 с использованием источников гамма-лучей или рентгеновских лучей
Автор(ы):, , , , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Георесурс" (RU)
Приоритеты:
подача заявки:
2009-10-16
публикация патента:

Изобретение относится к области метрологического обеспечения скважинной геофизической аппаратуры, а именно к калибровке аппаратуры по контролю технического состояния нефтяных и газовых скважин гамма-гамма методом. Техническим результатом изобретения является повышение точности измерений. Калибровочная установка содержит набор обсадных труб с цементным кольцом и заданными дефектами конструкции. Калибровочная установка содержит блок, воспроизводящий свойства породы и расположенный на горизонтальном основании. При этом вдоль вертикальной оси блока выполнен сквозной канал. Блок, воспроизводящий свойства породы, выполнен из двух равных подвижных частей, снабженных механизмами для возвратно-поступательного перемещения частей относительно друг друга по горизонтальному основанию. Вертикальная плоскость их раздела проходит по диаметру канала. Внутренний диаметр канала равен внешнему диаметру цементного кольца на обсадных трубах. При этом каждая из обсадных труб состоит из трех отрезков, последовательно соединенных между собой. Цементное кольцо расположено вдоль центрального отрезка и окружено герметичным корпусом. 3 ил.

калибровочная установка, патент № 2436949 калибровочная установка, патент № 2436949 калибровочная установка, патент № 2436949

Формула изобретения

Калибровочная установка скважинной аппаратуры по определению технического состояния скважин гамма-гамма методом, содержащая набор обсадных труб с цементным кольцом и заданными дефектами конструкции, отличающаяся тем, что она содержит блок, воспроизводящий свойства породы, расположенный на горизонтальном основании, вдоль вертикальной оси блока выполнен сквозной канал, блок, воспроизводящий свойства породы, выполнен из двух равных подвижных частей, снабженных механизмами для возвратно-поступательного перемещения частей относительно друг друга по горизонтальному основанию, а вертикальная плоскость их раздела проходит по диаметру канала, внутренний диаметр канала равен внешнему диаметру цементного кольца на обсадных трубах, при этом каждая из обсадных труб состоит из трех отрезков, последовательно соединенных между собой, а цементное кольцо расположено вдоль центрального отрезка и окружено герметичным корпусом.

Описание изобретения к патенту

Изобретение относится к области метрологического обеспечения скважинной геофизической аппаратуры, а именно к калибровке аппаратуры по контролю технического состояния нефтяных и газовых скважин гамма-гамма методом.

Из уровня техники известен ряд калибровочных устройств, обеспечивающих метрологический контроль скважинной геофизической аппаратуры.

Известна установка БПУ-НК для проверки аппаратуры нейтронного каротажа, состоящая из стандартизированной емкости, в которую заливается пресная вода, и комплекта стальных труб разного диаметра (имитаторов пористого пласта), имеющих герметично закрытое дно. Для калибровки скважинной аппаратуры на данной установке необходимо проверяемую аппаратуру поочередно устанавливать в каждый из имитаторов пористого пласта и опускать в емкость с водой. Пространство между трубой и проверяемым прибором не заполняется жидкостью, образуя воздушный слой, имитирующий условия, при которых показания проверяемой аппаратуры в имитаторе пористого пласта соответствуют реальным показаниям в пластах определенной пористости для нормальных условий. Блюменцев A.M., Калистратов Г.А., Лобанков В.М., Цирульников В.П. Метрологическое обеспечение геофизических исследований скважин. М., Недра, 1991, стр.138-142.

Известна установка для калибровки скважинных приборов гамма-каротажа, содержащая излучатель с источником гамма-излучения и отнесенные от излучателя на фиксированные расстояния калибруемый скважинный прибор с детектором и экран, который расположен между излучателем и детектором на линии соединения центра источника излучения с центром детектора скважинного прибора. Экран выполнен в виде цилиндрической кассеты, закрытой крышкой с коллимационным окном, полость кассеты разделена на равные секторы, заполненные прокалиброванными поглотителями с различной степенью поглощения гамма-излучения, при этом кассета установлена с возможностью вращения относительно крышки вокруг оси, параллельной линии соединения центра источника излучения с центром детектора скважинного прибора, таким образом, что коллимационное окно крышки и один сектор всегда находятся на указанной линии, а установка дополнительно снабжена устройством вращения кассеты и блоком сопряжения устройства вращения кассеты со скважинным прибором и управляющим компьютером. Поглотители изготовлены из образцов горных пород. Патент Российской Федерации № 2231810, МПК: G01V 13/00, 2004.

Наиболее распространенной аппаратурой для решения задач по определению технического состояния скважин является аппаратура типа СГДТ - селективный гамма-дефектомер-толщиномер, предназначенный для определения плотности вещества в затрубном пространстве, эксцентриситета колонны и толщины обсадной колонны. Прибор СГДТ состоит из источника гамма-излучения, набора датчиков толщиномера и плотномера. Применение метода рассеянного гамма-излучения основано на зависимости интенсивности рассеянного излучения от плотности вещества основных сред, слагающих обсаженную скважину. Основными средами, определяющими интенсивность регистрируемого рассеянного гамма-излучения в скважине, являются металлическая колонна, жидкость внутри колонны, горные породы, цементный камень или буровой раствор. Интенсивность излучения - функция, зависящая от толщины колонны, толщины цементного кольца, плотности цемента и плотности породы. Для калибровки такой аппаратуры используют установки, содержащие трубы, на которых расположены цементные кольца. Трубы выполнены с разными диаметрами и разной толщины. Цементные кольца разной плотности и геометрии относительно металлической трубы концентричны или эксцентричны. И трубы и цементные кольца могут содержать искусственно привнесенные дефекты: разные толщины, пустоты в цементном кольце и т.п. Для калибровки по контролю технического состояния скважин гамма-гамма методом скважинную аппаратуру помещают последовательно в трубы, регистрируют сигналы, параметры которых зависят от параметров данной трубы и цементного кольца на ней. Следует отметить, что не удается полностью исключить взаимного влияния сигналов друг на друга. Техническая инструкция по проведению геофизических исследований и работ на кабеле в нефтяных и газовых скважинах. М., 2001 г., с.198. Прототип.

По сравнению с реальными условиями эксплуатации аппаратуры в калибровочных установках такого типа не учитывают влияния породы, что снижает точность измерений.

Данное устройство устраняет указанный недостаток. Технический результат изобретения - повышение точности измерений.

Технический результат достигается тем, что калибровочная установка скважинной аппаратуры по определению технического состояния скважин гамма-гамма методом, содержащая набор обсадных труб с цементным кольцом и заданными дефектами конструкции, содержит блок, воспроизводящий свойства породы, расположенный на горизонтальном основании, вдоль вертикальной оси блока выполнен сквозной канал, переходящий в зумпф, блок, воспроизводящий свойства породы, выполнен в виде двух равных подвижных частей, снабженных механизмами для возвратно поступательного перемещения частей относительно друг друга по горизонтальному основанию, а вертикальная плоскость их раздела проходит по диаметру канала, внутренний диаметр канала равен внешнему диаметру цементного кольца, окруженного герметичным корпусом. Каждая из обсадных труб состоит из трех отрезков, последовательно соединенных между собой, цементное кольцо расположено вдоль центрального отрезка.

Существо изобретения поясняется на фиг.1, 2 и 3, где 1 - блок, воспроизводящий свойства породы (из листового стекла из двух частей), 2 - обсадная колонна, 3 - цементное кольцо (в обечайке), 4 - механизм для возвратно-поступательного перемещения частей блока, 5 - сквозной канал, 5 - труба зумпфа, 6 - центрирующий вкладыш, 7 - седло зумпфа, 8 - спусковая воронка, 9 - подъемная серьга, 10 - горловина, 11 - съемные винты центровки, 12 - горизонтальное основание.

На фиг.2 представлен разрез по А-А с центральным положением обечайки.

На фиг.3 представлен разрез по А-А с эксцентричным положением обечайки.

Калибровочная установка предназначена для получения градуировочных зависимостей и выполнения калибровок аппаратуры, реализующей метод гамма-гамма цементометрии. Скважину и околоскважинное пространство имитируют двумя подвижными частями блока 1, воспроизводящего свойства породы. Подвижные части блока 1 собраны из листового стекла плотностью 2.5 г/см3. Для спуска обсадной колонны 2 с цементным кольцом 3 части блока 1 раздвигают с помощью механизмов 4 для возвратно-поступательного перемещения частей блока 1, а затем сдвигают для плотного охвата цементного кольца 3. Обсадная колонна 2 с цементным кольцом 3 представляет собой сменную вставку. Снизу обсадная колонна 2 заглушена и имеет конусную фаску для центровки. Средняя секция обсадной колонны 2 (против цементного кольца 3) имеет калиброванную толщину. Цементное кольцо 3 находится в пространстве между стальной обсадной колонной 2 и тонкостенной обечайкой из стеклопластика (толщина обечайки 3 мм, плотность 1.8 г/см3). Цементное кольцо 3 герметизировано кольцевыми крышками на обечайке. Обсадные колонны 2 выполнены как с центрированным, так и эксцентричным цементным кольцом 3. В верхней части на обсадной колонне 2 закреплено кольцо для захвата подъемной серьгой 9 тельфера. Пространство над кольцом 3 оставлено для посадки спусковой воронки 8. Средняя секция (против цементного кольца 3) имеет калиброванную толщину. Цементное кольцо 3 находится в пространстве между обсадной колонной 2 и тонкостенной обечайкой из стеклопластика (толщина обечайки 3 мм, плотность 1,8 г/см3). Цементное кольцо 3 герметизировано кольцевыми крышками на обечайке. Цементное кольцо 3 может быть как эксцентричным, так и центрированным относительно оси колонны. При эксцентричном цементном кольце 3 тонкая его часть может быть без зазора прижата к стеклянному блоку (для этого необходимо развернуть вставку так, чтобы оси колонны, обечайки и «скважины» находились в одной плоскости), при этом против толстой части цементного кольца 3 будет технологический зазор не более 2 мм. Количество вставок представленной конструкции не ограничено. Части блока 1 перемещают с помощью механизма 4 для возвратно-поступательного перемещения частей блока. Перемещение осуществляют вручную путем вращения рукояток механизма 4 для возвратно-поступательного перемещения частей блока. Усилие вращения не более 1 кг. Для центрирования вставок в трубе зумпфера предусмотрено: внизу - конусное посадочное седло 7, а в верхней части - сменные центрирующие вкладыши 6 (для колонн 146 мм и 168 мм соответственно). Для закрепления положения обсадной колонны 2 на горловине крышки предусмотрены центрирующие винты 11.

Установка комплектуется подъемными серьгами 9 и спусковыми воронками 8, соответственно для колонн 146 мм и 168 мм, а также приспособлением для извлечения центрирующих вкладышей 6. Обсадные колонны 2 диаметром 148 мм или 168 мм последовательно помещают и закрепляют в стеклянном блоке 1. Исследуемый прибор помещают и центрируют в колонне с помощью штатных центраторов. После ввода прибора в рабочий режим информация с него поступает на штатный регистратор. Полученная информация для колонн с разными дефектами обрабатывают и по результатам выдают заключение.

Класс E21B47/00 Исследование буровых скважин

способы и системы для скважинной телеметрии -  патент 2529595 (27.09.2014)
способ передачи информации из скважины по электрическому каналу связи и устройство для его осуществления -  патент 2528771 (20.09.2014)
способ исследования скважины -  патент 2528307 (10.09.2014)
наложение форм акустических сигналов с использованием группирования по азимутальным углам и/или отклонениям каротажного зонда -  патент 2528279 (10.09.2014)
гироинерциальный модуль гироскопического инклинометра -  патент 2528105 (10.09.2014)
устройство и способ доставки геофизических приборов в горизонтальные скважины -  патент 2527971 (10.09.2014)
способ наземного приема-передачи информации в процессе бурения и устройство для его реализации -  патент 2527962 (10.09.2014)
способ исследования скважины -  патент 2527960 (10.09.2014)
способ газодинамического исследования скважины -  патент 2527525 (10.09.2014)
способ гидродинамических исследований газонасыщенных пластов без выпуска газа на поверхность -  патент 2527089 (27.08.2014)

Класс G01V13/00 Изготовление, градуировка, чистка или ремонт приборов и устройств, отнесенных к группам  1/00

способ дистанционного тестирования приборов акустического каротажа в полевых условиях -  патент 2521144 (27.06.2014)
способ отвода паров криогенных жидкостей из криогенной системы погружного каротажного оборудования -  патент 2488147 (20.07.2013)
способ тестирования аппаратуры импульсной электроразведки и средств обработки измеренных данных в полевых условиях -  патент 2482520 (20.05.2013)
способ калибровки устройства для наземного электромагнитного индукционного частотного зондирования -  патент 2461850 (20.09.2012)
способ градуировки радиоизотопных плотномеров -  патент 2442889 (20.02.2012)
устройство для калибровки скважинной аппаратуры -  патент 2423731 (10.07.2011)
устройство для калибровки скважинной геофизической аппаратуры -  патент 2421611 (20.06.2011)
улучшенная методика калибровки сейсмоприемника -  патент 2402793 (27.10.2010)
способ определения ошибки зонда для прибора на основе индукции или распространения с поперечными или трехосными массивами -  патент 2401442 (10.10.2010)
способ поверки приемных устройств для измерения глубины залегания подземных коммуникаций -  патент 2389045 (10.05.2010)

Класс G01V5/12 с использованием источников гамма-лучей или рентгеновских лучей

забойная телеметрическая система -  патент 2509210 (10.03.2014)
устройство для контроля положения ствола горизонтальной скважины -  патент 2490448 (20.08.2013)
моделирование характеристики гамма-лучевого каротажного зонда -  патент 2475784 (20.02.2013)
прямые модели для анализа подземных формаций с помощью измерения гамма-излучения -  патент 2464593 (20.10.2012)
способ градуировки радиоизотопных плотномеров -  патент 2442889 (20.02.2012)
способ определения плотности и фотоэлектрического поглощения пласта с использованием прибора плотностного каротажа литологического разреза на основе импульсного ускорителя -  патент 2441259 (27.01.2012)
бетатрон с простым возбуждением -  патент 2439865 (10.01.2012)
информация о радиальной плотности с бетатронного зонда плотности -  патент 2435177 (27.11.2011)
прибор для исследования качества цементирования обсадной колонны скважины в горной породе -  патент 2396552 (10.08.2010)
способ контроля геометрических и гидродинамических параметров гидроразрыва пласта -  патент 2390805 (27.05.2010)
Наверх