аналоговый перемножитель напряжений
Классы МПК: | G06G7/16 для умножения или деления H03F3/45 дифференциальные усилители |
Автор(ы): | Прокопенко Николай Николаевич (RU), Будяков Петр Сергеевич (RU), Серебряков Александр Игоревич (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования "Южно-Российский университет экономики и сервиса" (ГОУ ВПО "ЮРГУЭС") (RU) |
Приоритеты: |
подача заявки:
2010-12-27 публикация патента:
10.01.2012 |
Изобретение относится к области радиотехники и связи и может быть использовано в устройствах автоматической регулировки усиления, фазовых детекторах и модуляторах, а также в системах фазовой автоподстройки и умножения частоты или в качестве усилителя, коэффициент передачи по напряжению которого зависит от уровня сигнала управления. Технический результат заключается в расширении диапазона рабочих частот (полосы пропускания) АПН. Аналоговый перемножитель напряжений содержит перемножающую ячейку Джильберта, симметричную цепь нагрузки, преобразователь «напряжение-ток», первый и второй входные транзисторы, первый и второй логарифмирующие p-n переходы, цепь согласования потенциалов, масштабирующий резистор, первый и второй источники опорного напряжения, первую и вторую группы вспомогательных транзисторов. 8 ил.
Формула изобретения
Аналоговый перемножитель напряжений, содержащий перемножающую ячейку Джильберта (1), противофазные токовые выходы которой (2) и (3) связаны с первой (4) шиной источника питания через симметричную цепь нагрузки (5), первый 6 и второй (7) токовые входы канала «Y» перемножающей ячейки Джильберта (1), соединенные с соответствующими токовыми выходами преобразователя «напряжение-ток» канала «Y» (8), первый (9) и второй (10) потенциальные входы канала «X» перемножающей ячейки Джильберта (1), связанные с коллекторами соответствующих первого (11) и второго (12) входных транзисторов, первый (13) и второй (14) логарифмирующие p-n переходы, первые выводы которых объединены и через цепь согласования потенциалов (15) связаны с шиной первого (4) источника питания, причем второй вывод первого (13) логарифмирующего p-n перехода соединен с коллектором первого (11) входного транзистора, а второй вывод второго (14) логарифмирующего p-n перехода соединен с коллектором второго (12) входного транзистора, масштабирующий резистор (16), включенный между эмиттерами первого (11) и второго (12) входных транзисторов, первый (17) источник опорного тока, включенный между эмиттером первого (11) входного транзистора и второй (18) шиной источника питания, второй (19) источник опорного тока, включенный между эмиттером второго (12) входного транзистора и второй (18) шиной источника питания, отличающийся тем, что в схему введены первая (20) и вторая (21) группы вспомогательных транзисторов, причем коллекторы n>2 параллельно включенных вспомогательных транзисторов первой (20) группы соединены с эмиттером первого (11) входного транзистора, коллекторы n>2 параллельно включенных вспомогательных транзисторов второй (21) группы соединены с эмиттером второго (12) входного транзистора, эмиттеры и базы всех вспомогательных транзисторов первой (20) и второй (21) группы объединены и связаны со второй (18) шиной источника питания.
Описание изобретения к патенту
Предлагаемое изобретение относится к области радиотехники и связи и может быть использовано в устройствах автоматической регулировки усиления, фазовых детекторах и модуляторах, а также в системах фазовой автоподстройки и умножения частоты или в качестве усилителя, коэффициент передачи по напряжению которого зависит от уровня сигнала управления. Аналоговый перемножитель (АПН) является базовым узлом современных систем приема и обработки сигналов ВЧ и СВЧ-диапазонов, аналоговой вычислительной и измерительной техники, позволяет решать задачи выделения разностной частоты, аттенюации сигналов. АПН является неотъемлемым звеном квадратурных модуляторов и демодуляторов, а также синхронных фильтров. Высоколинейный широкополосный АПН может служить базовой ячейкой нелинейных СФ-блоков «систем на кристалле».
Аналоговый перемножитель напряжений (АПН) современных систем связи и телекоммуникаций реализуется, в основном, на базе перемножающей ячейки Джильберта, которая совершенствовалась в более чем 50 патентах ведущих микроэлектронных фирм (смотри, например, [1-36]). Предполагаемое изобретение относится к данному классу устройств.
На основе ячейки Джильберта реализуются не только перемножители напряжений, но и управляемые усилители, и смесители (миксеры) сигналов ВЧ и СВЧ диапазонов. В этом смысле АПН является базовым функциональным узлом современной микроэлектроники, определяющим качественные показатели многих систем связи.
Ближайшим прототипом заявляемого устройства является аналоговый перемножитель напряжений (АПН), (фиг.1), рассмотренный в монографии Е.И.Старченко «Аналоговые перемножители напряжений» - Шахты: Издательство ЮРГУЭС, 2006. - 57 с, стр.12, рис.2.2. Кроме этого данная структура АПН представлена в учебном пособии для вузов В.Н.Ногина «Аналоговые электронные устройства». - М.: Радио и связь, 1992. - 304 с, стр.260, рис.16.11, а также в патенте US 6.456.142, fig.8. Известный АПН содержит перемножающую ячейку Джильберта 1, противофазные токовые выходы которой 2 и 3 связаны с первой 4 шиной источника питания через симметричную цепь нагрузки 5, первый 6 и второй 7 токовые входы канала «Y» перемножающей ячейки Джильберта 1, соединенные с соответствующими токовыми выходами преобразователя «напряжение-ток» канала «Y» 8, первый 9 и второй 10 потенциальные входы канала «X» перемножающей ячейки Джильберта 1, связанные с коллекторами соответствующих первого 11 и второго 12 входных транзисторов, первый 13 и второй 14 логарифмирующие p-n переходы, первые выводы которых объединены и через цепь согласования потенциалов 15 связаны с шиной первого 4 источника питания, причем второй вывод первого 13 логарифмирующего p-n перехода соединен с коллектором первого 11 входного транзистора, а второй вывод второго 14 логарифмирующего p-n перехода соединен с коллектором второго 12 входного транзистора, масштабирующий резистор 16, включенный между эмиттерами первого 11 и второго 12 входных транзисторов, первый 17 источник опорного тока, включенный между эмиттером первого 11 входного транзистора и второй 18 шиной источника питания, второй 19 источник опорного тока, включенный между эмиттером второго 12 входного транзистора и второй 18 шиной источника питания.
Существенный недостаток известного перемножителя напряжений (АПН) состоит в том, что он имеет сравнительно невысокий диапазон рабочих частот, который ограничивается паразитными емкостями применяемых транзисторов (емкостью коллектор-база и емкостью на подложку).
Основная цель предлагаемого изобретения состоит в расширении диапазона рабочих частот (полосы пропускания) АПН.
Поставленная цель достигается тем, что в АПН, содержащем перемножающую ячейку Джильберта 1, противофазные токовые выходы которой 2 и 3 связаны с первой 4 шиной источника питания через симметричную цепь нагрузки 5, первый 6 и второй 7 токовые входы канала «Y» перемножающей ячейки Джильберта 1, соединенные с соответствующими токовыми выходами преобразователя «напряжение-ток» канала «Y» 8, первый 9 и второй 10 потенциальные входы канала «X» перемножающей ячейки Джильберта 1, связанные с коллекторами соответствующих первого 11 и второго 12 входных транзисторов, первый 13 и второй 14 логарифмирующие p-n переходы, первые выводы которых объединены и через цепь согласования потенциалов 15 связаны с шиной первого 4 источника питания, причем второй вывод первого 13 логарифмирующего p-n перехода соединен с коллектором первого 11 входного транзистора, а второй вывод второго 14 логарифмирующего p-n перехода соединен с коллектором второго 12 входного транзистора, масштабирующий резистор 16, включенный между эмиттерами первого 11 и второго 12 входных транзисторов, первый 17 источник опорного тока, включенный между эмиттером первого 11 входного транзистора и второй 18 шиной источника питания, второй 19 источник опорного тока, включенный между эмиттером второго 12 входного транзистора и второй 18 шиной источника питания, предусмотрены новые элементы и связи - в схему введены первая 20 и вторая 21 группы вспомогательных транзисторов, причем коллекторы n>2 параллельно включенных вспомогательных транзисторов первой 20 группы соединены с эмиттером первого 11 входного транзистора, коллекторы n>2 параллельно включенных вспомогательных транзисторов второй 21 группы соединены с эмиттером второго 12 входного транзистора, эмиттеры и базы всех вспомогательных транзисторов первой 20 и второй 21 группы объединены и связаны со второй 18 шиной источника питания.
На чертеже фиг.1 показана схема АПН-прототипа.
На чертеже фиг.2 представлена схема классической перемножающей ячейки Джильберта (1), которая реализована на транзисторах 33÷36.
На чертеже фиг.3 приведена схема заявляемого АПН в соответствии с формулой изобретения.
На чертеже фиг.4 показана схема аналогового перемножителя фиг.2 в среде Cadence на моделях SiGe интегральных транзисторов с цепями расширения частотного диапазона, реализованными на основе первой 20 и второй 21 группы вспомогательных транзисторов.
На чертеже фиг.5 приведена зависимость коэффициента усиления АПН фиг.4 от частоты с использованием первой 20 и второй 21 группы вспомогательных транзисторов с различными площадями эмиттерных переходов при сопротивлении масштабирующего резистора 16, равном R16=200 Ом, и напряжении управления по каналу «Y», равном Vу=100 мВ.
На чертеже фиг.6 показана зависимость коэффициента усиления АПН фиг.4 от частоты при сопротивлении масштабирующего резистора 16 R16=200 Ом и другом напряжении управления по каналу «Y», равном Vу=200 мВ.
Чертеж фиг.7 иллюстрирует зависимость коэффициента усиления АПН от частоты при подключении первой 20 и второй 21 группы вспомогательных транзисторов с различными площадями эмиттерных переходов при сопротивлении масштабирующего резистора 16 R16=1 кОм и напряжении управления по каналу «Y», равном Vу=100 мВ.
На чертеже фиг.8 приведена зависимость коэффициента усиления АПН от частоты при подключении первой 20 и второй 21 группы вспомогательных транзисторов с различными площадями эмиттерных переходов при сопротивлении масштабирующего резистора 16 R16=1 кОм и другом напряжении управления по каналу «Y», равном Vу=200 мВ.
Заявляемый АПН фиг.3 содержит классическую перемножающую ячейку Джильберта 1 (фиг.2), противофазные токовые выходы которой 2 и 3 связаны с первой 4 шиной источника питания через симметричную цепь нагрузки 5, первый 6 и второй 7 токовые входы канала «Y» перемножающей ячейки Джильберта 1, соединенные с соответствующими токовыми выходами преобразователя «напряжение-ток» канала «Y» 8, первый 9 и второй 10 потенциальные входы канала «X» перемножающей ячейки Джильберта 1, связанные с коллекторами соответствующих первого 11 и второго 12 входных транзисторов, первый 13 и второй 14 логарифмирующие p-n переходы, первые выводы которых объединены и через цепь согласования потенциалов 15 связаны с шиной первого 4 источника питания, причем второй вывод первого 13 логарифмирующего p-n перехода соединен с коллектором первого 11 входного транзистора, а второй вывод второго 14 логарифмирующего p-n перехода соединен с коллектором второго 12 входного транзистора, масштабирующий резистор 16, включенный между эмиттерами первого 11 и второго 12 входных транзисторов, первый 17 источник опорного тока, включенный между эмиттером первого 11 входного транзистора и второй 18 шиной источника питания, второй 19 источник опорного тока, включенный между эмиттером второго 12 входного транзистора и второй 18 шиной источника питания. В схему введены первая 20 и вторая 21 группы вспомогательных транзисторов, причем коллекторы n>2 параллельно включенных вспомогательных транзисторов первой 20 группы соединены с эмиттером первого 11 входного транзистора, коллекторы n>2 параллельно включенных вспомогательных транзисторов второй 21 группы соединены с эмиттером второго 12 входного транзистора, эмиттеры и базы всех вспомогательных транзисторов первой 20 и второй 21 группы объединены и связаны со второй 18 шиной источника питания.
В частном случае на чертеже фиг.3 первый 17 и второй 19 источники опорного тока выполнены на транзисторах 22 и 23. Однако в ряде случаев авторы рекомендуют использовать в качестве данных элементов сравнительно высокоомные резисторы.
В схеме фиг.3 симметричная цепь нагрузки 5 реализована на базе коллекторных резисторов 24 и 25. В других схемах включения это могут быть индуктивности или колебаторные контуры.
Конденсаторы 26 и 27 на чертеже фиг.3 характеризуют выходную емкость транзисторов 22 и 23.
Преобразователь «напряжение-ток» канала «Y» (фиг.3) выполнен по традиционной схеме на транзисторах 28 и 29, резисторе 30, токостабилизирующих двухполюсниках 31 и 32.
На чертеже фиг.2 перемножающая ячейка Джильберта 1 выполнена по классической архитектуре и содержит транзисторы 33÷36. В качестве цепи согласования потенциалов 15 могут использоваться стабилитроны, резисторы или диоды.
Рассмотрим работу АПН фиг.3.
Для реализации функции перемножения двух напряжений uх и uу в схеме фиг.3 необходимо с помощью преобразователя «напряжение-ток» канала «Y» 8 обеспечить преобразование управляющего напряжения uу с крутизной S в два противофазно изменяющихся тока и управление этими токами величиной коэффициента усиления по напряжению дифференциальных каскадов на транзисторах 33, 36 и 34, 35 (фиг.2). В схеме фиг.3 при увеличении тока первого 6 токового входа на величину и уменьшении тока второго 7 токового входа на величину коэффициент усиления по напряжению каскада на транзисторах 35, 36 (фиг.2) увеличивается, а каскада на транзисторах 37, 38 (фиг.2) уменьшается. Поэтому, переменное выходное напряжение АПН пропорционально произведению напряжений uх и u у:
где RH.ЭКВ - эквивалентное сопротивление цепи симметричной нагрузки 5;
т 26 мВ - температурный потенциал.
Замечательная особенность в АПН фиг.3 состоит в том, что в нем обеспечивается взаимная компенсация влияния на амплитудно-частотную характеристику емкости коллекторного перехода транзистора 11 (12) и вспомогательных транзисторов первой 20 (второй 21) группы, а также транзисторов ячейки Джильберта (1), что снижает погрешность перемножения u х и uу в диапазоне высоких частот (f>10 ГГц). При этом за счет высокой идентичности транзисторов и их паразитных емкостей условия взаимной компенсации не нарушаются в рабочих диапазонах температур. В практических схемах число элементарных транзисторов, входящих в первую 20 и вторую 21 группу вспомогательных транзисторов лежит в пределах n=2÷6 и зависит от выбранной площади эмиттерных переходов и геометрии элементарных транзисторов.
Действительно, анализ графиков фиг.5-фиг.8 показывает, что выигрыш по верхней граничной частоте коэффициента усиления (по уровню -3дБ), который обеспечивает введение первой 20 и второй 21 группы вспомогательных транзисторов, лежит в пределах от 8 ГГц до 12 ГГц (в зависимости от заданного уровня неравномерности амплитудно-частотной характеристики). Это позволяет за счет оптимального выбора числа n элементарных транзисторов, входящих в первую 20 и вторую 21 группу вспомогательных транзисторов и площадей их эмиттерных переходов, скорректировать амплитудно-частотную характеристику АПН в области высоких частот и обеспечить для SiGe технологий SGB25VD верхнюю граничную частоту 16÷24 ГГц, вместо 9÷10 ГГц.
Таким образом, предлагаемое техническое решение характеризуется более высокими качественными параметрами по частотному диапазону.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Патент GB 2.318.470, H03f 3/45
2. Патент ЕР 1.369.992
3. Патент США № 5.874.857
4. Патент США № 6.456.142, фиг.8
5. Патент США № 3.931.583, фиг.9
6. Патентная заявка США № 2007/0139114, фиг.1
7. Патентная заявка США № 2005/0073362, фиг.1
8. Патент США № 5.057.787
9. Патентная заявка WO 2004/041298
10. Патент США № 5.389.840, фиг.1А
11. Патент США № 5.883.539, фиг.1
12. Патентная заявка США № 2005/0052239
13. Патент США № 5.151.625, фиг.1
14. Патент США № 4.458.211, фиг.5
15. Патентная заявка США № 2005/0030096, фиг.6
16. Патентная заявка США № 2007/0090876
17. Патент США № 6.727.755
18. Патент США № 5.552.734, фиг.13, фиг.16
19. Патентная заявка США № 2006/0232334
20. Патент США № 5.767.727
21. Патент США № 6.229.395, фиг.2
22. Патент США № 5.115.409
23. Патентная заявка США № 2005/0231283, фиг.1
24. Патентная заявка США № 2006/0066362, фиг.15
25. Патент США № 5.151.624, фиг.1, фиг.2
26. Патент США № 5.329.189, фиг.2
27. Патент США № 4.704.738
28. Патент США № 4.480.337
29. Патент США № 5.825.231
30. Патент США № 6.211.718, фиг.1, фиг.2
31. Патент США № 5.151.624
32. Патент США № 5.329.189
33. Патент США № 5.331.289
34. Патент GB № 2.323.728
35. Патентная заявка США № 2008/0122540, фиг.1
36. Патент США № 4.965.528
Класс G06G7/16 для умножения или деления
Класс H03F3/45 дифференциальные усилители
избирательный усилитель с расширенным частотным диапазоном - патент 2525744 (20.08.2014) | |
мультидифференциальный операционный усилитель - патент 2523124 (20.07.2014) | |
управляемый избирательный усилитель - патент 2520418 (27.06.2014) | |
составной транзистор - патент 2519563 (10.06.2014) | |
избирательный усилитель - патент 2519558 (10.06.2014) | |
избирательный усилитель - патент 2519446 (10.06.2014) | |
гибридный дифференциальный усилитель - патент 2519373 (10.06.2014) | |
управляемый избирательный усилитель - патент 2519035 (10.06.2014) | |
инструментальный усилитель - патент 2519032 (10.06.2014) | |
дифференциальный операционный усилитель с пассивным параллельным каналом - патент 2517699 (27.05.2014) |