способ получения титан-, цирконий-, гафний-, германий- и оловосодержащих керамик

Классы МПК:C04B35/64 способы обжига или спекания
C04B35/48 на основе оксидов циркония или гафния или цирконатов или гафнатов
Автор(ы):,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный университет им. Н.И. Лобачевского" (RU)
Приоритеты:
подача заявки:
2010-07-12
публикация патента:

Изобретение относится к технологии получения высокоплотных керамик из ортофосфатов и ортоарсенатов титана, циркония, гафния, германия и олова. Техническим результатом заявляемого изобретения является получение высокоплотных керамик при уменьшении количества спекающей добавки и температуры спекания. Способ получения титан-, цирконий-, гафний-, германий- и оловосодержащих керамик включает смешивание исходных титан-, цирконий-, гафний-, германий- и оловосодержащих порошков со структурой типа коснарита или вольфрамата скандия с добавкой ZnO 0,5-2,0 мас.%. Затем полученную смесь прессуют при минимально допустимом давлении 200-300 МПа и подвергают отжигу при 850-1050°С в течение 15-20 ч. 4 табл.

Формула изобретения

Способ получения титан-, цирконий-, гафний-, германий- и оловосодержащих керамик путем отжига спрессованных порошков, имеющих структуры типа коснарита или вольфрамата скандия, с применением спекающей добавки ZnO, отличающийся тем, что смешивают исходный титан-, цирконий-, гафний-, германий- и оловосодержащий порошок со структурой типа коснарита или вольфрамата скандия с добавкой ZnO 0,5-2,0 мас.%, затем полученную смесь прессуют при минимально допустимом давлении 200-300 МПа и подвергают отжигу при 850-1050°С в течение 15-20 ч.

Описание изобретения к патенту

Изобретение относится к технологии получения высокоплотных керамик из ортофосфатов и ортоарсенатов титана, циркония, гафния, германия и олова, имеющих структуры типа минерала коснарита KZr 2(PO4)3 или вольфрамата скандия Sc 2(WO4)3. Многофункциональность этих материалов с плотностью, большей 90% от теоретической (рентгенографической), позволяет применять их в изделиях, требующих высокого сопротивления термоудару (огнеупорные футеровки и их элементы, арматура для высокоточной пайки, полупроводниковые подложки, носители катализаторов, оптические скамьи), в электронике (керамические электролиты, газовые сенсоры и топливные элементы), в машиностроении и транспортных системах (компоненты двигателей), в энергетике (радиационно-стойкий теплоизоляционный материал, локализующая матрица для захоронения токсичных отходов, включая радиоактивные), в химической технологии (селективные катализаторы).

Структуры типа коснарита и вольфрамата скандия построены объединением по вершинам LO 6-октаэдров и TO4-тетраэдров, образующих трехмерный каркас {[L2(TO4)3]p- }3способ получения титан-, цирконий-, гафний-, германий- и оловосодержащих   керамик, патент № 2440957 , в котором Т-позиции могут быть заселены Р5+ , Si4+, Ge4+, As5+ или S 6+, L-позиции - Nb5+, Ta5+, Ti 4+, Zr4+, Hf4+, Ge4+, Sn4+, Mo4+, U4+, Sc3+ , Y3+, Ln3+(лантаноиды), V3+ , Cr3+, Fe3+, Al3+, Ga3+ , In3+, Ti3+, Mg2+, Mn2+ , Cu2+, Co2+, Ni2+, Zn2+ , Na+ и др. (см. статью Петькова В.И. и Орловой А.И. Кристаллохимический подход к прогнозированию теплового расширения соединений со структурой фосфата натрия-дициркония. - Неорганические материалы. 2003. Т.39. № 10, с.1177-1188). Часто позиции L каркаса заняты сочетанием этих катионов. Внекаркасные позиции структур способны включать преимущественно малозарядные крупные (структура типа коснарита) и небольшие (структура типа вольфрамата скандия) катионы в степенях окисления от +1 до +4 или оставаться вакантными.

Перечисленные выше сферы применения ортофосфатов и ортоарсенатов требуют получения изделий из указанных керамик с относительной плотностью, близкой к теоретической.

Известно, что основной недостаток керамики - склонность к хрупкому разрушению. Порог разрушения на дефектах типа пустот (между зернами материала) может быть превышен задолго до того, как общая нагрузка на изделие достигнет порогового значения. Поэтому актуальны методы получения высокоплотных монолитных керамик, которые сводят к минимуму число таких дефектов. Одновременно с увеличением плотности улучшаются механические свойства керамик, их термическая стабильность и электропроводность, а скорость химических реакций на их поверхности (растворение, взаимодействие с растворами и расплавами солей) снижается за счет уменьшения удельной поверхности (см. книгу Балкевича В.Л. Техническая керамика. М.: Стройиздат, 1984, с.15-20).

Получение керамик включает этапы синтеза порошков-прекурсоров твердофазным или золь-гель методами, их последующего прессования и спекания при высоких температурах, способствующего формированию высокоплотных изделий.

Известна технология получения керамик из фосфатов NaZr2(PO4)3 , Са0.5Zr2(PO4)3, Sr0.5Zr2(PO4)3, Ва 0.5Zr2(PO4)3 (см. статью на англ. яз. авторов S.Maschio, A.Bachiorrini, E.Lucchini, S.Bruckner. Synthesis, sintering and thermal expansion of porous low expansion ceramics - J.Europ.Ceram. Soc. 2004. V.24. P.3535-3540), имеющих структуру коснарита, путем прессования порошков соединений при 200 МПа и отжига при 1300°С в течение 2 ч. Недостатками данного способа являются невысокая плотность приготовленных керамик (72-80% от теоретической) и высокое давление прессования.

Увеличение плотности керамик возможно с увеличением температуры отжига (см. статью на англ. яз. авторов D.A.Rega, D.K.Agrawal, C.-Y. Huang, H.A.McKinstry. Microstructure and microcracking behaviour of barium zirconium phosphate (BaZr4P 6O24) ceramics - J.Mat.Sci. 1992. V. 27. P.2406-2412): так, при приготовлении керамики состава Ва0.5Zr 2(PO4)3, имеющего структуру типа коснарита, путем спекания при 1100-1600°С в течение 0.2-10 ч порошка-прекурсора, полученного золь-гель методом, максимальная относительная плотность керамических образцов - 74% была достигнута в результате отжига порошка-прекурсора при 1600°С в течение часа. Главными недостатками этого способа являются невысокая плотность керамики и экономически невыгодная высокая температура отжига.

Известное производство (компания SMAHT Ceramic, Inc. «SMAHT») керамических изделий с относительной плотностью 73-98.8% из фосфатов циркония со структурой типа коснарита (см., например, патент США № 4801566, С04В 35/48, 1989) основано на прессовании порошков указанных материалов при 140-250 МПа и спекании при 1200-1500°С в течение 12-48 ч. Недостатками такого производства являются значительный разброс плотности керамик разного химического состава и экономически невыгодная высокая температура спекания.

Понижения температуры спекания фосфатов можно достичь с помощью введения добавок - оксидов и солей металлов. Так, известна методика приготовления фосфатных керамик Ca1-xSrx Zr4(PO4)6 (х=0, 0.25, 0.5, 0.75, 1.0) со структурой коснарита, которую заявитель выбрал в качестве прототипа (см. статью на англ. яз. авторов N.Chakraborty, D.Basu, W.Ficher. Thermal expansion of Ca1-xSrx Zr4(PO4)6 ceramics. - J.Europ.Ceram. Soc. 2005. V.24. P.1885-1893). Керамики были получены прессованием порошков фосфатов с 3 и 5 мас.% ZnO при 50 МПа и отжигом при 1100, 1200 и 1300°С в течение 2, 4 и 6 ч. Плотность приготовленных керамик составляла 89-99%. Плотность образцов, полученных при 1300°С в течение 6 ч без спекающей добавки ZnO, составляла 76-84%. Методика имеет ряд существенных недостатков - относительно высокие температуры отжига и большое количество спекающей добавки.

Известно, что повышенное количество добавки ускоряет уплотнение керамик на начальном этапе спекания, а затем, при высоких температурах, способствует росту зерен (рекристаллизации) в ней, обуславливающему уменьшение плотности образцов (см. книгу Летюка Л.М. и Журавлева Г.И. Химия и технология ферритов. Л.: Химия. 1983, с.233-245). Из-за рекристаллизации образцов авторам не удалось достичь плотности, близкой к теоретической, для всех исследованных керамик. В известной работе (см. статью на англ. яз авторов N.Chakraborty, D.Basu, W.Ficher. Thermal expansion of Ca1-xSrxZr4(PO4 )6 ceramics. - J.Europ.Ceram. Soc. 2005. V.24. P.1885-1893) также отмечается, что большое количество добавки ZnO приводит к появлению примеси ZrO2 в керамиках в ходе отжига в результате взаимодействия ZnO со спекаемым фосфатом и росту теплового расширения низкорасширяющихся керамик.

Таким образом, основными недостатками способа-прототипа являются высокая температура отжига (выше 1200°С), требующая использования высокотемпературных печей, большое количество спекающей добавки (>3 мас.%), стимулирующей рост зерен керамики при температуре выше 1100°С, препятствующей достижению максимальной плотности и оптимальной микроструктуры материала и приводящей к частичному разложению спекаемого соединения с образованием дополнительных фаз, ухудшающих теплофизические и механические свойства керамики.

Технический результат заявляемого изобретения - получение высокоплотных керамик при уменьшении количества спекающей добавки и температуры спекания за счет экспериментально найденного оптимального режима получения титан-, цирконий-, гафний-, германий- и оловосодержащих керамик со структурой коснарита или вольфрамата скандия.

Заявляемый способ в сравнении с прототипом имеет следующие существенные преимущества:

- не требует температур отжига выше 1050°С, что не приводит к рекристаллизации керамики и ее разрыхлению и экономически целесообразно,

- обеспечивает активное уплотнение керамики с небольшим количеством спекающей добавки, что позволяет избежать появления примесей в керамике и изменения ее свойств,

- позволяет получать высокоплотные керамики со структурами коснарита и вольфрамата скандия разного химического состава,

- открывает возможности получения высокоплотной керамики с термической стабильностью, не превышающей 900°С.

Для достижения указанного технического результата в предлагаемом способе получения титан-, цирконий-, гафний-, германий- и оловосодержащих керамик путем отжига спрессованных порошков, имеющих структуры типа коснарита или вольфрамата скандия, с применением спекающей добавки ZnO, смешивают исходный цирконий- или титансодержащий порошок со структурой коснарита или вольфрамата скандия с добавкой ZnO 0.5-2.0 мас.%, затем полученную смесь прессуют при минимально допустимом давлении 200-300 МПа и подвергают отжигу при 850-1050°С в течение 15-20 ч.

Заявляемый способ осуществляют в следующем порядке. При получении титан-, цирконий-, гафний-, германий- и оловосодержащих керамик со структурой коснарита или вольфрамата скандия путем спекания спрессованных порошков ортофосфатов и ортоарсенатов со структурами коснарита и вольфрамата скандия:

а) смешивают исходный титан-, цирконий-, гафний-, германий- и оловосодержащий порошок со структурой коснарита или вольфрамата скандия с заданным количеством ZnO, выбираемым из интервала 0.5-2 мас.%;

б) прессуют полученную порошковую смесь при давлении 200-300 МПа;

в) осуществляют изотермический отжиг спрессованного порошка при температуре, выбираемой из интервала 850-1050°С, в течение 15-20 ч;

г) охлаждают полученную керамику до комнатной температуры.

Для обоснования существенности признаков заявляемого способа приведены следующие примеры получения керамик со структурой коснарита или вольфрамата скандия (получение гафний-, германий- и оловосодержащих керамик со структурой коснарита или вольфрамата скандия предлагаемым образом также обеспечивает достижение вышеуказанного технического результата).

Пример 1.

Для обоснования оптимального давления прессования навеску порошка NaZr2(PO4) 3, приготовленного золь-гель методом с конечной температурой синтеза 1100°С, смешивают с 0.75 мас.% ZnO в агатовой ступке, прессуют при 200-600 МПа и подвергают отжигу при температуре 900-1050°С в течение 20 ч. Теоретическая плотность NaZr 2(PO4)3, рассчитанная на основе рентгенографических данных, составляет 3.190 г/см3.

Таблица 1
Давление прессования, МПа Относительная плотность керамик, %
Спрессов. при 25°С 900°С1000°С 1050°С 1200°С
20063 8693 9593
300 6689 9496 93
400 68 9095 9791
500 6891 9698 93
600 70 9297 9794

Данные таблицы 1 свидетельствуют, что при температуре спекания 1050°С, обеспечивающей получение керамики с плотностью больше 90%, плотность керамики не зависит от давления прессования. Оптимальным является давление прессования 200-300 МПа. Более низкое давление прессования может приводить к разрушению спрессованных образцов.

Пример 2.

Для обоснования оптимальных количеств спекающей добавки и температуры отжига навеску порошка NaZr2(PO 4)3, приготовленного золь-гель методом с конечной температурой синтеза 1100°С, смешивают с 0-5.0 мас.% ZnO в агатовой ступке, прессуют при 300 МПа и подвергают отжигу при температуре 800-1200°С в течение 20 ч. Теоретическая плотность NaZr2(PO4)3, рассчитанная на основе рентгенографических данных, составляет 3.190 г/см 3.

Таблица 2
Количество добавки ZnO, мас.% Относительная плотность керамик, %
Спрессов. при 25°С 800°С900°С 1000°С 1050°С
067 6666 6666
0.25 6667 7377 85
0.5 65 6881 9094
0.75 6669 8994 96
1.0 67 7191 9697
1.5 6675 9296 98
2.0 67 7893 9799

Данные таблицы свидетельствуют, что плотность керамик выше 90% достигается при температуре отжига 900-1050°С и содержании спекающей добавки ZnO 0.5-2,0 мас.%. Увеличение содержания спекающей добавки выше 2 мас.% не приводит к увеличению плотности керамики. Повышение температуры спекания выше 1050°С приводит к разуплотнению керамики.

В сравнении с получением керамик по способу-прототипу данные, приведенные в таблице 2, подтверждают достижение высокой плотности рассматриваемых керамик при меньших количествах спекающей добавки и температурах спекания.

Пример 3.

Для обоснования оптимального времени отжига навески порошка NaZr 2(PO4)3, приготовленного золь-гель методом с конечной температурой синтеза 1100°С, смешивают с 0.75 мас.% ZnO в агатовой ступке, прессуют при 300 МПа и подвергают отжигу при температуре 1050°С в течение 5-25 ч. Теоретическая плотность NaZr2(PO4)3, рассчитанная на основе рентгенографических данных, составляет 3.190 г/см 3.

Таблица 3
Время, чОтносительная плотность керамик, %
579
15 92
20 96
2597

Плотность керамики увеличивается с увеличением времени отжига до 20 ч. Дальнейшее выдерживание керамики в условиях отжига не приводило к росту ее плотности. Таким образом, оптимальным по длительности является спекание в течение 15-20 ч.

Пример 4.

Для уточнения нижнего порога оптимального температурного интервала отжига в широком интервале составов исходных цирконий- или титансодержащих порошков навески порошков AZr2(PO4) 3 (А=Li, К, Cs), ATi2(PO4)3 (А=Li, Na, К), AZr2(AsO4)3 (А=Na, К, Cs), В0.5Zr2(PO4) 3 (В=Mg, Са, Sr, Ba), LiZr2(AsO4) x(PO4)3-x, NaZr2(AsO 4)x(PO4)3-x, KZr2 (AsO4)x(PO4)3-x, CsZr2(AsO4)x(PO4) 3-x (x=0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0), Na3 MgZr(PO4)3, Na5Zr(PO4 )3, приготовленных золь-гель методом с конечной температурой синтеза 1100°С для фосфатов и 900°С - для мышьяксодержащих соединений, смешивают с навеской 0.75 мас.% ZnO в агатовой ступке, прессуют при 300 МПа и подвергают отжигу при температуре 850-1100°С в течение 20 ч.

Таблица 4
СоединениеТип структуры* Температура отжига, °СОтносительная плотность керамик, %
LiZr2(PO4)3 K1050 94
KZr 2(PO4)3 K1050 97
CsZr 2(PO4)3 K1050 96
LiTi 2(PO4)3 K1050 87
NaTi 2(PO4)3 K1050 93
KTi 2(PO4)3 К1050 95
NaZr 2(AsO4)3 К850 95
KZr 2(AsO4)3 К850 95
CsZr 2(AsO4)3 К850 96
Mg 0.5Zr2(PO4)3 ВС850 94
Ca 0.5Zr2(PO4)3 К1050 96
Sr 0.5Zr2(PO4)3 K1050 95
Ba 0.5Zr2(PO4)3 K1050 96
Na 3MgZr(PO4)3 K900 96
Na 5Zr(PO4)3 K850 94
LiZr 2(PO4)3 ВС850 89
LiZr 2(AsO4)0.5(PO4)2.5 ВС 85090

Соединение Тип структуры*Температура отжига, °С Относительная плотность керамик, %
LiZr2(AsO4)(PO4)2 ВС 85093
LiZr2 (AsO4)1.5(PO4)1.5 ВС 85094
LiZr2 (AsO4)2PO4 ВС850 92
LiZr 2(AsO4)2.5(PO4)0.5 ВС 85091
LiZr2 (AsO4)3 ВС850 91
NaZr 2(AsO4)0.5(PO4)2.5 K 85093
NaZr2 (AsO4)(PO4)2 K850 94
NaZr 2(AsO4)l.5(PO4)1.5 K 85094
NaZr2 (AsO4)2PO4 K850 95
NaZr 2(AsO4)2.5(PO4)0.5 K 85094
KZr2(AsO 4)0.5(PO4)2.5 K850 94
KZr 2(AsO4)(PO4)2 K850 96
KZr 2(AsO4)1.5(PO4)1.5 K 85097
KZr2(AsO 4)2PO4 K850 97
KZr 2(AsO4)2.5(PO4)0.5 K 85096
CsZr2 (AsO4)0.5(PO4)2.5 K 85094
CsZr2 (AsO4)(PO4)2 K850 95
CsZr 2(AsO4)l.5(PO4)l.5 K 85097
CsZr2 (AsO4)2(PO4) K850 97
CsZr 2(AsO4)2.5(PO4)0.5 K 85096
*Тип структуры: К - коснарит, ВС - вольфрамат скандия

Класс C04B35/64 способы обжига или спекания

способ изготовления керамического проппанта -  патент 2515661 (20.05.2014)
способ получения кварцевой керамики с пониженной температурой обжига -  патент 2513745 (20.04.2014)
способ получения циркониевой керамики -  патент 2506247 (10.02.2014)
способ получения газоплотной керамики на основе оксида церия и церата бария -  патент 2506246 (10.02.2014)
способ изготовления магнийсиликатного проппанта -  патент 2501831 (20.12.2013)
способ переработки лома огнеупорных, строительных и керамических материалов для получения керамических сфер и керамическая сфера -  патент 2491254 (27.08.2013)
способ получения керамического градиентного материала -  патент 2454297 (27.06.2012)
проппанты и добавки от обратного выноса, сделанные из силлиманитных минералов, способы получения и способы применения -  патент 2448142 (20.04.2012)
способ изготовления кремнеземистого проппанта и проппант -  патент 2445339 (20.03.2012)
печь для термообработки -  патент 2439454 (10.01.2012)

Класс C04B35/48 на основе оксидов циркония или гафния или цирконатов или гафнатов

способ изготовления керамических наконечников для волоконно-оптических соединителей -  патент 2509752 (20.03.2014)
наполнители и композитные материалы с наночастицами диоксида циркония и кремнезема -  патент 2472708 (20.01.2013)
огнеупор, содержащий двуокись циркония и углерод, и способ его изготовления -  патент 2463277 (10.10.2012)
шихта для получения материала на основе стабилизированного нанопорошка диоксида циркония -  патент 2463276 (10.10.2012)
спеченный и легированный продукт на основе циркона + nb2o5 или ta2o5 -  патент 2453519 (20.06.2012)
огнеупорный материал на основе циркона -  патент 2440952 (27.01.2012)
объемный твердый электролит для высокотемпературных электротехнических устройств и способ его изготовления -  патент 2422952 (27.06.2011)
способ получения жаростойкого цирконсодержащего материала -  патент 2400451 (27.09.2010)
способ получения огнеупорного керамического материала на основе циркона -  патент 2399600 (20.09.2010)
способ изготовления плотной керамики для твердого электролита -  патент 2382750 (27.02.2010)
Наверх