сцинтилляционный детектор электронного и бета-излучений
Классы МПК: | G01T1/20 с помощью сцинтилляционных детекторов |
Автор(ы): | Черепанов Александр Николаевич (RU), Чернухин Юрий Илларионович (RU), Терехин Владимир Александрович (RU), Шульгин Борис Владимирович (RU), Иванов Владимир Юрьевич (RU), Гофман Илья Алексеевич (RU), Лещев Андрей Александрович (RU), Тесленко Ольга Сергеевна (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования "Уральский государственный технический университет-УПИ имени первого Президента России Б.Н. Ельцина" (RU) |
Приоритеты: |
подача заявки:
2010-04-29 публикация патента:
27.01.2012 |
Изобретение относится к области детекторов ионизирующих излучений, чувствительных к электронному и бета-излучению, предназначенных для определения энергии электронного и бета-излучения и применяемых в дозиметрической и таможенной практике для идентификации источников, электронного и бета-излучения, а также при работе с радиоизотопами в медицинской диагностике и терапии. Сущность изобретения заключается в том, что сцинтилляционный детектор электронного и бета-излучения, включающий замедлитель электронов, сцинтиллятор, фотоприемник и тракт обработки сигналов, при этом замедлитель электронов и сцинтиллятор выполнены в виде единого блока из сборки сцинтиллирующих волокон, расположенных перпендикулярно направлению распространения регистрируемого излучения, а фотоприемник выполнен в виде двухкоординатно-чувствительного фоторегистратора. Технический результат - повышение точности определения энергии. 1 ил.
Формула изобретения
Сцинтилляционный детектор электронного и бета-излучений, включающий замедлитель электронов, сцинтиллятор, фотоприемник и тракт обработки сигналов, отличающийся тем, что замедлитель электронов и сцинтиллятор выполнены в виде единого блока из сборки сцинтиллирующих волокон, расположенных перпендикулярно направлению распространения регистрируемого излучения, а фотоприемник выполнен в виде двухкоординатно-чувствительного фоторегистратора.
Описание изобретения к патенту
Изобретение относится к области детекторов ионизирующих излучений, чувствительных к электронному и бета-излучению, предназначенных для определения энергии электронного и бета-излучения и применяемых в дозиметрической и таможенной практике для идентификации источников, электронного и бета-излучения, а также при работе с радиоизотопами в медицинской диагностике и терапии.
Известен сцинтилляционный детектор ядерных излучений (патент US № 3688118, кл. G01T 1/00, 1972), который содержит два сцинтилляционных детектора, один из которых чувствителен к заряженным частицам, к электронному и бета-излучению и нейтронам, а второй сцинтилляционный детектор чувствителен только к заряженным частицам, к электронному и бета-излучению. Однако ни один из этих сцинтилляционных детекторов электронного и бета-излучения не пригоден для идентификации их энергии, поскольку каждый из них работает только в счетном режиме.
Известны сцинтилляционные детекторы электронного и бета-излучения на основе органических материалов (Шрам Э., Ломбер Р. Органические сцинтилляторы. М.: Атомиздат, 1967. 184 с.). Органические сцинтилляторы, уступая неорганическим по термической устойчивости, обладают рядом преимуществ: они обладают малой длительностью сцинтилляций и являются быстрыми сцинтилляторами нано- и пикосекундного диапазона. Они, в отличие от неорганических сцинтилляторов, пригодны для регистрации супермягкого электронного и бета-излучения. Однако органические сцинтилляционные детекторы работают в счетном режиме и не обеспечивают спектрометрии электронного и бета-излучения. Использование органических сцинтилляторов в сцинтилляционных спектрометрах ограничено из-за их крайне низкого энергетического разрешения (несколько десятков процентов) и из-за необходимости применения сложных спектрометрических электронных трактов.
Известен сцинтилляционный детектор электронного и бета-излучения в виде последовательно соединенных сцинтилляционного кристалла Bi4Ge3O12 и световода из органического водородсодержащего вещества-сцинтиллятора на основе стильбена или пластмассы (CH)n, чувствительного к быстрым нейтронам, а также электронному и бета-излучению (патент RU № 2088952, кл. G01N 1/20, 1997). Однако известный сцинтилляционный детектор по патенту RU № 2088952 применяется только в счетном режиме. Возможность его применения для определения энергии электронного и бета-излучения ограничена из-за низкого энергетического разрешения используемых в нем материалов: энергетическое разрешение кристаллов Bi 4Ge3O12 обычно составляет 15-20%, а органического компонента сцинтилляционного детектора - десятки процентов. Кроме того, известный сцинтилляционный детектор для определения энергии требует применения сложного спектрометрического электронного тракта.
Известен сцинтилляционный детектор, в частности сцинтилляционный детектор электронного и бета-излучения (патент US № 5514870, кл. G01T 001/202; G01T 001/203, 1996). Сцинтилляционный детектор содержит чистый кристалл CsI и быстрый пластический сцинтиллятор NE102A. В качестве фотоприемника используют фотоумножитель. При регистрации падающей радиации световые сцинтилляции от обоих сцинтилляторов - пластика и кристалла CsI, поступают на фотоумножитель, сигналы от которого обрабатываются электронным трактом. Однако тракт обработки сигналов известного детектора оказывается сложным. Он включает в себя анализатор импульсов, временной селектор с короткими и длинными временными воротами. Детектор при анализе вида падающей радиации обеспечивает высокое временное разрешение (3 нс), задаваемое пластиком. Однако при определении энергии падающего электронного или бета-излучения временное разрешение детектора оказывается недостаточно высоким, для чистого кристалла CsI оно составляет 30 нс.
Известен сцинтилляционный детектор электронного и бета-излучения, описанный в работе (В.Прайс. Регистрация ядерного излучения. М.: ИИЛ, 1960. 464 с). Детектор содержит сцинтиллятор, фотоприемник и тракт обработки сигналов. В качестве сцинтиллятора в известном устройстве применяют кристаллы антрацена, обладающие малым временем высвечивания (до 4 нс) и не требующие в отличие от кристаллов NaI-Т1 герметичной упаковки. В качестве фотоприемника применяют фотоэлектронный умножитель. Сцинтиллятор выбирается такого размера, чтобы его площадь равнялась площади катода торцевого фотоумножителя, а толщина - пробегу бета-частиц с максимальной энергией. Тракт обработки сигналов известного сцинтилляционного бета-спектрометрического детектора содержит блок анализатора, который регистрирует только импульсы, соответствующие пику полной энергии, и анализирует формируемый амплитудный спектр, а также содержит сложную схему, которая корректирует получаемый амплитудный спектр из-за нелинейной зависимости световыхода антрацена от энергии электронного и бета-излучения при энергиях ниже 100 кэВ. Недостатком известного устройства является постоянная толщина выбранного сцинтиллятора, равная, по крайней мере, пробегу бета-частиц с максимальной энергией, что делает его малопригодным, если требуются измерения бета-источников других типов с более жестким спектром, т.е. с большей максимальной энергией. Недостатком является также наличие сложной схемы анализатора и коррекции сигналов.
Наиболее близким к заявляемому является сцинтилляционный детектор электронного и бета-излучения (пат. 2251124 от 14.10.2003), который состоит из клинообразного поглотителя излучения вогнутой формы, сцинтиллятора в виде одномерного сцинтилляционного экрана, фотоприемника в виде одномерной фоточувствительной линейки и тракта обработки сигналов. Электронное или бета-излучение в известном детекторе попадает на клинообразный поглотитель излучения и проникает сквозь него на глубину, не превышающую максимальный экстраполированный пробег электронов (бета-частиц) для данной энергии. Прошедшее сквозь поглотитель излучение попадает на сцинтиллятор, обеспечивая его свечение и загрузку находящегося в оптическом контакте с ним фотоприемника. Благодаря клинообразной форме поглотителя свечение сцинтиллятора и соответственно загрузка фотоприемника имеет место от начала (нулевой толщины) клина до некоторого предела, соответствующего определенной толщине клина, по которому и можно определить максимальную энергию падающего излучения. Таким образом, координата крайней светящейся ячейки сцинтилляционного экрана соответствует некоторой максимальной энергии регистрируемого излучения. Фоторегистрирующее устройство и тракт обработки сигналов определяют крайнюю светящуюся ячейку сцинтилляционного экрана путем сравнения сигнала от каждой ячейки фоторегистрирующей линейки с сигналом, соответствующим пороговому значению, адекватному фону. Однако известный детектор электронного и бета-излучения, имея относительно простой тракт обработки сигналов, обладает и принципиальным недостатком, связанным с тем, что движение электронов ионизирующего излучения при их замедлении внутри клинообразного замедлителя происходит не по прямолинейной, а по сложной ломанной траектории. По этой причине крайняя светящаяся точка сцинтилляционного экрана может лишь качественно (очень неточно) указывать на энергию регистрируемых электронов. Особенно высокие неточности определения энергии электронного и бета-излучения известным детектором имеют место при малых энергиях электронных излучений, т.е. в области малых толщин клинообразного замедлителя. Таким образом, известный детектор электронного и бета-излучения имеет низкое энергетическое разрешение в широком диапазоне энергий регистрируемых излучений и не пригоден для спектрометрических измерений.
Задачей предлагаемого изобретения является создание технического решения детектора электронного и бета-излучения с относительно простым трактом обработки сигналов, обеспечивающего повышенную точность определения энергии электронного или бета-излучения.
Задача изобретения решается благодаря тому, что в предлагаемом техническом решении детектора электронного и бета-излучения замедлитель электронов и сцинтиллятор выполнены в виде единого блока из сборки сцинтиллирующих волокон, расположенных перпендикулярно направлению распространения регистрируемого излучения, а фотоприемник выполнен в виде двухкоординатно-чувствительного фоторегистратора, например ПЗС-матрицы.
Схема предлагаемого технического решения детектора электронного и бета-излучения представлена на чертеже.
Предлагаемый детектор электронного и бета-излучения состоит из сборки 1 сцинтилляционных волокон, двухкоординатно-чувствительного фоторегистратора 2 (например, ПЗС-матрицы), блока обработки сигналов 3 и светоотражающего зеркала 4. Сборка сцинтилляционных волокон 1 находится в оптическом контакте с фоторегистратором 2 и зеркалом 3.
Предлагаемый детектор электронного и бета-излучения работает следующим образом. Электронное или бета-излучение попадает на сборку 1 сцинтилляционных волокон в направлении, перпендикулярном расположению волокон, вызывая в волокнах появление сцинтилляционных вспышек. По мере проникновения электронного или бета-излучения вглубь сборки 1 сцинтилляционных волокон происходит уменьшение энергии регистрируемых электронов до такого уровня, при котором возникновение сцинтилляционных вспышек становится невозможным. Толщина сборки 1 сцинтилляционных волокон всегда выбирается больше максимального пробега регистрируемых электронов. Сцинтилляционные вспышки, возникшие в волокнах сборки 1, по этим же волокнам передаются в двухкоординатно-чувствительный фоторегистратор 2, находящийся в оптическом контакте с одним из торцов сцинтилляционных волокон сборки 1. Другие торцы волокон сборки 1 находятся в оптическом контакте со светоотражающим зеркалом 4, которое повышает светосбор сцинтилляционных вспышек на фоторегистраторе 2. Таким образом, в результате попадания электронного или бета-излучения на сборку 1 сцинтилляционных волокон на фотоприемнике 2 возникает двумерная яркостная картина, позволяющая достаточно точно судить об энергетическом распределении электронов в регистрируемом потоке. Несмотря на то что движение электронов ионизирующего излучения при их замедлении внутри сборки волокон происходит не по прямолинейной, а по сложной ломанной траектории, точность определения энергии электронов в предлагаемом детекторе оказывается выше, чем, например, в случае известного детектора с клинообразным замедлителем (пат. 2251124 от 14.10.2003), поскольку, во-первых, светосбор сцинтилляций происходит в параллельных каналах, формируемых отдельными волокнами по всей ширине регистрируемого потока ионизирующего излучения, а, во-вторых, получаемая двумерная картина позволяет вести более точный анализ энергетического распределения электронов в регистрируемом потоке излучения. Сигнал с фоторегистратора 2 считывается блоком обработки сигналов 3.
Дополнительным преимуществом предлагаемого сцинтилляционного детектора электронного и бета-излучения является возможность регистрации не только электронного и бета-, но и позитронного излучения.
Класс G01T1/20 с помощью сцинтилляционных детекторов