способ получения источников гамма-излучения на основе радионуклида 74se для гамма-дефектоскопии
Классы МПК: | G21G4/04 радиоактивные источники, кроме источников нейтронов |
Автор(ы): | Волчков Юрий Евгеньевич (RU), Декопов Андрей Семенович (RU), Злобин Николай Николаевич (RU), Косицин Евгений Михайлович (RU), Кузнецов Леонид Кондратьевич (RU), Шимбарев Евгений Васильевич (RU), Федотов Владимир Иванович (RU), Хорошев Виктор Николаевич (RU) |
Патентообладатель(и): | Открытое акционерное общество "Научно-исследовательский институт технической физики и автоматизации" (ОАО "НИИТФА") (RU) |
Приоритеты: |
подача заявки:
2010-12-28 публикация патента:
27.02.2012 |
Изобретение относится к ядерной технике, а именно к промышленной гамма-дефектоскопической аппаратуре. Способ получения источников гамма-излучения на основе радионуклида селен-75 для гамма-дефектоскопии заключается в герметизации заготовки активируемого сердечника из высокообогащенного (не менее 96%) селена-74 в ампулу, облучения полученной ампулы в атомном реакторе и последующей герметизации облученной ампулы в капсуле. Полнотелую монолитную заготовку облучаемого сердечника, выполненную с плотностью, соответствующей теоретической, помещают в полностью соответствующий ей дисциплинирующий объем. Крышку ампулы герметизируют лазерной сваркой с одновременным отводом тепла, а внешние поверхности ампулы подвергают напылению с последующими герметизацией и упрочнением металлом. У металла при облучении в реакторе образуются изотопы, имеющие энергию гамма-излучения меньше энергии гамма-излучения селена-75 с периодом полураспада менее 1 ч, толщина слоя покрытия которого обеспечит компенсацию избыточного давления, создающегося внутри герметичной ампулы при облучении, облучают в реакторном потоке тепловых нейтронов плотностью не менее 1015 Н/см2 в режиме, обеспечивающем достижение максимальной удельной активности селена-75 (не менее 1250 Ки/г), и герметизируют аргонодуговой сваркой в рабочей капсуле. Изобретение позволяет повысить разрешающую способность, сократить время контроля и улучшить чувствительность и расширить технологические возможности аппаратуры. 2 з.п. ф-лы.
Формула изобретения
1. Способ получения источников гамма-излучения на основе радионуклида селен-75 для гамма-дефектоскопии, включающий герметизацию заготовки активируемого сердечника из высокообогащенного (не менее 96%) селена-74 в ампулу, облучение полученной ампулы в атомном реакторе и последующую герметизацию облученной ампулы с селеном в капсуле из легированной стали, отличающийся тем, что полнотелую монолитную заготовку облучаемого сердечника, например, в виде цилиндра, выполненную с плотностью, соответствующей теоретической, например, литейным способом, помещают в полностью соответствующий ей дисциплинирующий объем цилиндрического гнезда неактивируемой в нейтронном потоке ампулы, крышку которой герметизируют лазерной сваркой с одновременным отводом тепла, а внешние поверхности полученной ампулы подвергают напылению с последующими герметизацией и упрочнением напыленного слоя гальваническим способом металлом, у которого при облучении в реакторе образуются изотопы, имеющие энергию гамма-излучения меньше энергии гамма-излучения селена-75 с периодом полураспада менее 1 ч, толщина слоя покрытия которого обеспечит компенсацию избыточного давления, создающегося внутри герметичной ампулы при облучении, облучают в реакторном потоке тепловых нейтронов плотностью не менее 1015 Н/см2 в режиме, обеспечивающем достижение максимальной удельной активности селена-75 (не менее 1250 Ки/г), и герметизируют аргонодуговой сваркой в рабочей капсуле.
2. Способ по п.1, отличающийся тем, что в качестве материала первой ампулы используют термостойкий кварц, а в качестве упрочняюще-герметизирующего металла - ванадий.
3. Способ по п.1, отличающийся тем, что гальваническое упрочняюще-герметизирующее покрытие металлом может быть многослойным.
Описание изобретения к патенту
Изобретение относится к ядерной технике и преимущественно к области средств исследования материалов промышленных изделий без их разрушения, а именно к радиационным методам контроля качества макроструктуры широкой номенклатуры сварных соединений в диапазоне радиационных толщин от 5 до 30 мм по стали с использованием радиоизотопного излучателя на основе активируемого стабильного изотопа 74 Se в промышленной гамма-дефектоскопической аппаратуре, технологические возможности которой (помимо энергетического спектра и активности) определяются расчетным методом, в том числе с учетом геометрических размеров активной части используемого излучателя, которые учитываются при разработке технологии и регламентации параметров геометрии контроля.
При разработке технологии радиографического метода контроля и определении геометрических параметров контроля регламентируемое значение геометрической нерезкости Uг, определяющее величину размытия краев изображения, находится в аналитической зависимости от радиационной толщины h объекта контроля, фокусного расстояния F и размеров активной части Ф источника излучения:
а регламентированная чувствительность метода контроля (W) при этом определена зависимостью:
W=2Uг.
Известен способ производства источника излучения с высокой удельной активностью (до 500 Ки/г), на основе радионуклида иридий-192 с периодом полураспада 74,5 суток, получаемого активацией заготовки из природного иридия в потоке тепловых нейтронов канала реактора с последующей герметизацией в рабочей капсуле сваркой в атмосфере инертного газа [2]. Фотоны энергетического спектра излучения источника на основе радионуклида иридий-192 характеризуется повышенной проникающей способностью характеристических жестких линий (~0,4-1,0 МэВ). При этом в диапазоне радиационных толщин от 5 до 30 мм из-за шумового вклада комптоновского рассеяния, образующегося при взаимодействии жестких линий спектра излучения радионуклида иридий-192 с веществом, данный излучатель не обеспечивает чувствительности метода контроля (до 1,0%), сопоставимой с чувствительностью, обеспечиваемой излучателем на основе радионуклида селен-75. Период полураспада источника излучения на основе радионуклида иридий-192 в 1,6 раза меньше, чем у излучателя на основе радионуклида селен-75. В связи с изложенным отсутствуют основополагающие методические предпосылки к использованию данного способа производства излучателей на основе радионуклида иридий-192 применительно к контролю особо ответственных изделий в диапазоне радиационных толщин от 5 до 30 мм по стали, в том числе в условиях радиационного фона.
Известны технологии производства источников гамма-излучения посредством активации в реакторе стартового продукта стабильного изотопа селен-74, предварительно помещенного в первичную ампулу и его трансформации в радиоактивный изотоп селен-75 при облучении в потоке тепловых нейтронов по реакции 74Se(n, ) 75Se. Причем первичную ампулу с радиоактивным изотопом селен-75 помещают после облучения в прочную наружную капсулу, герметизирующую первичную капсулу. Также известно, что многократное повышение удельной активности источника с радионуклидом селен-75 достигается за счет увеличения концентрации содержания изотопа селен-74 в облучаемой ампуле [3, 4 и 5].
Известны источники излучения, полученные на основе природной смеси стабильных изотопов оксида селена с периодом полураспада 120 суток и низкой удельной активностью (~5 Ки/г) вследствие низкого содержания изотопа селен-74 (0,87%), что предопределяет большие размеры активной части излучателя [2], не обеспечивающие надлежащую геометрию, чувствительность и режимы метода контроля.
Известен также способ изготовления источников гамма-излучения для дефектоскопии посредством активации в нейтронном потоке обогащенного до 40% селена-74 в алюминиевой капсуле [6], который также не может быть применен вследствие недостаточной активности и увеличенных размеров активной части излучателя облучаемого источника, а сварной шов алюминиевой капсулы, полученный лазерной сваркой, не обеспечивает требований регламента температурных испытаний источника при аттестации на соответствие веществу особого вида.
Известен способ получения источника гамма-излучения на основе селена-75, который получают из природной смеси стабильных изотопов оксида селена методом фторирования газообразным фтором при температуре 100-350°С и атмосферном давлении по реакции 74 Se+F2 74SeF6+1029 кДж/моль с регулировкой состава смеси в пределах 10-25% по фтору и последующим обогащением на каскаде газовых центрифуг по молекуле 74SeF 6 до содержания изотопа селен-74 не менее 96%, а также конверсии гексафторида в стабильный изотоп селен-74 при температуре 250-270°С по реакции с газообразным аммиаком 2NH3 +74SeF6 74Se+6HF+N2 и подачей очищенного аргона для предотвращения обратной реакции. Полученное стартовое сырье в виде высокообогащенного (не менее 96%) стабильного изотопа селен-74 превращают в заготовку для активации, для чего многократно запрессовывают до плотности не менее 3 г/см3 в первичную химически стойкую, например, титановую капсулу, которую герметизируют лазерной сваркой с применением средств теплоотвода, например медных втулок. Затем первичную капсулу помещают в теплоотводящую реакторную мишень и облучают в реакторном потоке тепловых нейтронов плотностью не менее 1015 Н/см2 с. После активации первичную капсулу помещают во вторую коррозионностойкую прочную капсулу, например, из нержавеющей стали и заваривают аргонодуговой сваркой [7].
Способ получения источника гамма-излучения на основе селена-75 с применением первичной титановой ампулы для герметичной упаковки стартового продукта в виде многократно прессованного порошка стабильного изотопа 74Se согласно действующему регламенту правил контроля [10, 11] по формальному признаку реализации не подлежит в связи с модификациями характеристического спектра излучения за счет активации в том числе материала первичной капсулы при ее облучении в реакторе с образованием помимо энергетического спектра радионуклида Se-75 дополнительных линий энергетического спектра дочернего продукта Sc-46 с энергией излучения Е =0,89-1,12 МэВ, дублирования и значительного увеличения фокального пятна излучателя при этом, геометрические параметры которого определяются габаритными размерами активированной первичной капсулы, что предопределяет увеличение размытия краев изображения и ухудшение чувствительности метода контроля за счет шумового вклада комптоновского рассеяния. Способ также характеризуется недостаточной плотностью прессованной заготовки активируемого сердечника в сравнении с теоретической и, соответственно, недостаточной абсолютной активностью полученного излучателя, а также нестабильностью геометрических параметров фокального пятна излучателя вследствие низкой температуры плавления прессованного стартового продукта (217°С) в сравнении с температурным режимом активации (до 500°С).
Наиболее близким по назначению, принятым за прототип, является способ изготовления источников гамма-излучения для дефектоскопии посредством активации в нейтронном потоке заключенной в герметичный объем первичной ампулы из ванадия, прессованной до плотности ~80% от теоретической, таблетки высокообогащенного селена-74, причем герметичный объем ампулы дополнен гарантированным объемом температурной компенсации, а герметизация первичной ампулы реализована в капсуле из легированной стали [8].
К недостаткам описанного технического решения следует отнести использование для активации в первичной ампуле из ванадия прессованной таблетки (сердечника) из сепарированного стартового сырья порошка стабильного изотопа Se-74, так как:
- прессованная таблетка активируемого сердечника из стартового сырья порошка стабильного изотопа Se-74 имеет меньшую удельную плотность в сравнении с монолитной, в связи с чем при одинаковых геометрических размерах располагает меньшим потенциалом для активации и соответственно величиной абсолютной активности, что критично для острофокусных излучателей с размерами активной части менее 1,0×1,0 мм, что допустимо при контроле объектов общепромышленного назначения и недопустимо при контроле особо ответственных изделий первого контура АЭС в условиях радиационного фона;
- материал стартового сырья Se-74, относящийся к УI группе таблицы элементов Д.И.Менделеева, с температурой плавления 217°С в условиях рабочих температур активации (до 500°С) подвержен легкоплавким эвтектическим новообразованиям и образованию тугоплавких интерметаллидов VSe, V2Se3, VSe3 с материалом внутренней ампулы из ванадия [9], потере параметров, декларированных техническими регламентами производителя [10, 11, 12, 13], и в том числе геометрических форм и размеров активированного сердечника с увеличением размера фокального пятна излучателя, что предопределяет увеличение размытия краев изображения и ухудшение чувствительности метода контроля при этом;
- в процессе прессования порошкового стартового сырья Se-74 формируется пористая структура сердечника, содержащая воздушную компоненту, которая в условиях рабочих температур активации в реакторе вызывает окисление стартового сырья и провоцирует разгерметизацию первичной ампулы.
Технический результат, который может быть получен при использовании изобретения, заключается в повышении разрешающей способности и достоверности контроля, в сокращении времени контроля и улучшении чувствительности, а также расширении технологических возможностей аппаратуры, в том числе в условиях радиационного фона, за счет получения параметрического ряда острофокусных излучателей на основе радионуклида Se-75 с соответствующим характеристическим энергетическим спектром излучателя, повышении абсолютной активности за счет монолитности макроструктуры активируемого сердечника, обеспечении гарантированных размеров и формы активной части источника согласно техническому регламенту производителя при одновременном исключении возможности произвольного увеличения размеров фокального пятна излучателя в процессе активации.
Указанный технический результат достигается за счет того, что в способе получения источников гамма-излучения на основе радионуклида 75Se для гамма-дефектоскопии, включающим герметизацию заготовки активируемого сердечника из высокообогащенного (не менее 96%) селена-74 в ампулу, облучение полученной ампулы в атомном реакторе и последующую герметизацию облученной ампулы с селеном в капсуле из легированной стали, полнотелую монолитную заготовку облучаемого сердечника, например, в виде цилиндра, выполненную с плотностью, соответствующей теоретической (4,76 г/см3), например, литейным способом, помещают в полностью соответствующий ей дисциплинирующий объем цилиндрического гнезда неактивируемой в нейтронном потоке ампулы, плотно притертую крышку которой герметизируют лазерной сваркой с одновременным отводом тепла, а внешние поверхности полученной ампулы подвергают напылению с последующими герметизацией и упрочнением напыленного слоя гальваническим способом металлом, у которого при облучении в реакторе образуются изотопы, имеющие энергию гамма-излучения меньше энергии гамма-излучения селена-75 с периодом полураспада менее 1 ч, толщина слоя покрытия которого обеспечит компенсацию избыточного давления, создающегося внутри герметичной ампулы при облучении, облучают в реакторном потоке тепловых нейтронов плотностью не менее 10 Н/см2 режиме, обеспечивающем достижение максимальной удельной активности селена-75 (не менее 1250 Ки/г), и герметизируют аргонодуговой сваркой в рабочей капсуле из легированной стали, причем в описанном способе указанный технический результат получают и в том случае, когда в качестве материала первой ампулы используют термостойкий кварц, а в качестве упрочняющее-герметизирующего металла ванадий, а также и в том случае, когда гальваническое упрочняюще-герметизирующее покрытие металлом может быть многослойным.
Сущность изобретения можно пояснить на примере конкретного исполнения.
После анализа химической чистоты полученное стартовое сырье в виде высокообогащенного (не менее 96%) стабильного изотопа селен-74 превращают в заготовки для активации, для чего его расплавляют в инертной среде и помещают в заранее подогретые объемы цилиндрических гнезд неактивируемых в нейтронном потоке кварцевых ампул-изложниц, например, вакуумным методом с последующим остыванием, притиркой кварцевых крышек и герметизацией в воздушной среде посредством лазерной сварки с использованием средств теплоотвода для уменьшения температуры ампулы и монолитной заготовки из селена-74.
Для предотвращения возможности разгерметизации термостойких кварцевых ампул и компенсации избыточного внутреннего давления, создающегося при облучении в реакторе, внешние поверхности заваренных ампул подвергают напылению ванадием с последующей упрочняющей герметизацией гальваническим способом ванадием, толщина слоя покрытия которого обеспечивает необходимую прочностную компенсацию избыточного давления.
Компенсированные по прочности герметизированные активируемые ампулы с учетом минимизированного эффекта их взаимного влияния друг на друга по поглощению нейтронов помещают в соответствующие гнезда блока реакторной мишени, снабженного теплоотводящим элементом и устанавливают в оболочку мишени, омываемую в процессе облучения теплоносителем реактора. Для достижения требуемой активности ампулы облучают в канале реактора с высокой плотностью потока тепловых нейтронов до 1015 Н/см2·с, а по окончании кампании облучения активированные ампулы с радионуклидом селен-75 извлекают из реакторной мишени и помещают в рабочие капсулы из легированной стали и герметизируют аргоно-дуговой сваркой.
Для определения соответствия заявленного способа критериям изобретения был проведен поиск и анализ патентной и научной литературы, содержащей описание имеющих отношение к заявленному способу технических решений в рассматриваемой и смежных областях техники. Одновременно в рамках тематической разработки комплекса аппаратуры для гамма-дефектоскопического контроля сварных соединений «трубных досок» парогенераторов БН-800 исследовались параметры серийных источников излучения на основе радионуклида селен-75. Исследования показали, что размеры активированных сердечников стандартных излучателей, помещенных непосредственно в ампулу из ванадия ~ в 2 раза превышают параметры, декларированных техническими регламентами производителя [12, 13] с увеличением размера фокального пятна излучателя, что ухудшает чувствительность метода контроля. Исследования подтвердили также резкое ~ 3-кратное ухудшение защитных свойств аппаратуры при использовании стандартных излучателей, первично ампулированных в титановую оболочку и активированных в ней, причем в спектре указанного излучателя, помимо энергетического спектра радионуклида Se-75, обнаружены дополнительные линии энергетического спектра энергией излучения Е =0,89-1,12 МэВ. Таким образом, известные технологии производства изотопов на основе радионуклида селен-75 не позволяют обеспечить получение технического результата, указанного в заявленном способе.
Исходя из вышесказанного, можно сделать вывод о том, что предложенное техническое решение является новым и явным образом не следует из уровня техники, имеет изобретательский уровень, промышленно осуществимо и при использовании обеспечивает заявленный положительный технический эффект, то есть соответствует критериям изобретения.
Источники информации:
1. Румянцев С.В. и др. Справочник по радиационным методам неразрушающего контроля. М.: Энергоиздат. 1982, с.50.
2. Сытин В.П. и др. Радиоактивные источники ионизирующих излучений. М.: Энергоатомиздат, 1984, с.67.
3. Патент США N 3147225, кл. 252-301.1, 1964.
4. Патент США N 3234099, кл. 376-189, 1966.
5. Патент США N 3421001, кл. 250-106, 1969.
6. Каталог Источники альфа-, бета-, гамма- и нейтронного излучения. М.: ВО «Изотоп», 1980, с.53-54.
7. Патент РФ № 2054718, G21G 4/04, приоритет 18.03.1993 г.
8. Патент РФ № 2196364, G21G 4/04, приоритет 04.04.2001 г.
9. Фрейдин Б.М. и др. Материал для источника гамма-излучения на основе селенида ванадия. Тезисы докладов. Седьмая международная научно-техническая конференция, Москва, май 2010 г.
10. ГОСТ 20426-82 «Контроль неразрушающий. Методы дефектоскопии радиационные. Область применения».
11. ПНАЭ Г-7-017-89 «Унифицированная методика контроля основных материалов (полуфабрикатов) сварных соединений и наплавки оборудования и трубопроводов АЭУ. Радиографический контроль».
12. Источники гамма-излучения, закрытые на основе радионуклида Селен-75 для радиографии. Технические условия. ТУ 95 2338-92 (ЗН 226600000 ТУ).
13. Каталог «Радионуклидные источники и препараты», ГНЦ РФ НИИАР, Димитровград, 1998 г.
Класс G21G4/04 радиоактивные источники, кроме источников нейтронов